예제 #1
0
    def __init__(self, images, group=None, verbose=False, reference_shape=None,
                 holistic_features=no_op,
                 transform=DifferentiablePiecewiseAffine, diagonal=None,
                 scales=(0.5, 1.0), max_shape_components=None,
                 max_appearance_components=None, batch_size=None):

        checks.check_diagonal(diagonal)
        scales = checks.check_scales(scales)
        n_scales = len(scales)
        holistic_features = checks.check_features(holistic_features, n_scales)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_scales, 'max_shape_components')
        max_appearance_components = checks.check_max_components(
            max_appearance_components, n_scales, 'max_appearance_components')

        self.holistic_features = holistic_features
        self.transform = transform
        self.diagonal = diagonal
        self.scales = scales
        self.max_shape_components = max_shape_components
        self.max_appearance_components = max_appearance_components
        self.reference_shape = reference_shape
        self.shape_models = []
        self.appearance_models = []

        # Train AAM
        self._train(images, increment=False, group=group, verbose=verbose,
                    batch_size=batch_size)
예제 #2
0
    def __init__(self,
                 features=igo,
                 patch_shape=(16, 16),
                 normalization_diagonal=None,
                 n_levels=3,
                 downscale=2,
                 scaled_shape_models=True,
                 max_shape_components=None,
                 max_appearance_components=None,
                 boundary=3):
        # check parameters
        checks.check_n_levels(n_levels)
        checks.check_downscale(downscale)
        checks.check_normalization_diagonal(normalization_diagonal)
        checks.check_boundary(boundary)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_levels, 'max_shape_components')
        max_appearance_components = checks.check_max_components(
            max_appearance_components, n_levels, 'max_appearance_components')
        features = checks.check_features(features, n_levels)

        # store parameters
        self.features = features
        self.patch_shape = patch_shape
        self.normalization_diagonal = normalization_diagonal
        self.n_levels = n_levels
        self.downscale = downscale
        self.scaled_shape_models = scaled_shape_models
        self.max_shape_components = max_shape_components
        self.max_appearance_components = max_appearance_components
        self.boundary = boundary

        # patch-based AAMs can only work with TPS transform
        self.transform = DifferentiableThinPlateSplines
예제 #3
0
    def __init__(self, features=igo, patch_shape=(16, 16),
                 normalization_diagonal=None, n_levels=3, downscale=2,
                 scaled_shape_models=True, max_shape_components=None,
                 max_appearance_components=None, boundary=3):
        # check parameters
        checks.check_n_levels(n_levels)
        checks.check_downscale(downscale)
        checks.check_normalization_diagonal(normalization_diagonal)
        checks.check_boundary(boundary)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_levels, 'max_shape_components')
        max_appearance_components = checks.check_max_components(
            max_appearance_components, n_levels, 'max_appearance_components')
        features = checks.check_features(features, n_levels)

        # store parameters
        self.features = features
        self.patch_shape = patch_shape
        self.normalization_diagonal = normalization_diagonal
        self.n_levels = n_levels
        self.downscale = downscale
        self.scaled_shape_models = scaled_shape_models
        self.max_shape_components = max_shape_components
        self.max_appearance_components = max_appearance_components
        self.boundary = boundary

        # patch-based AAMs can only work with TPS transform
        self.transform = DifferentiableThinPlateSplines
예제 #4
0
 def __init__(self,
              features=igo,
              transform=DifferentiablePiecewiseAffine,
              trilist=None,
              normalization_diagonal=None,
              n_levels=3,
              downscale=2,
              scaled_shape_models=True,
              max_shape_components=None,
              max_appearance_components=None,
              boundary=3):
     # check parameters
     checks.check_n_levels(n_levels)
     checks.check_downscale(downscale)
     checks.check_normalization_diagonal(normalization_diagonal)
     checks.check_boundary(boundary)
     max_shape_components = checks.check_max_components(
         max_shape_components, n_levels, 'max_shape_components')
     max_appearance_components = checks.check_max_components(
         max_appearance_components, n_levels, 'max_appearance_components')
     features = checks.check_features(features, n_levels)
     # store parameters
     self.features = features
     self.transform = transform
     self.trilist = trilist
     self.normalization_diagonal = normalization_diagonal
     self.n_levels = n_levels
     self.downscale = downscale
     self.scaled_shape_models = scaled_shape_models
     self.max_shape_components = max_shape_components
     self.max_appearance_components = max_appearance_components
     self.boundary = boundary
예제 #5
0
 def __init__(self, features=igo, transform=DifferentiablePiecewiseAffine,
              trilist=None, normalization_diagonal=None, n_levels=3,
              downscale=2, scaled_shape_models=True,
              max_shape_components=None, max_appearance_components=None,
              boundary=3):
     # check parameters
     checks.check_n_levels(n_levels)
     checks.check_downscale(downscale)
     checks.check_normalization_diagonal(normalization_diagonal)
     checks.check_boundary(boundary)
     max_shape_components = checks.check_max_components(
         max_shape_components, n_levels, 'max_shape_components')
     max_appearance_components = checks.check_max_components(
         max_appearance_components, n_levels, 'max_appearance_components')
     features = checks.check_features(features, n_levels)
     # store parameters
     self.features = features
     self.transform = transform
     self.trilist = trilist
     self.normalization_diagonal = normalization_diagonal
     self.n_levels = n_levels
     self.downscale = downscale
     self.scaled_shape_models = scaled_shape_models
     self.max_shape_components = max_shape_components
     self.max_appearance_components = max_appearance_components
     self.boundary = boundary
예제 #6
0
    def __init__(self, images, group=None, verbose=False, reference_shape=None,
                 holistic_features=no_op,
                 transform=DifferentiablePiecewiseAffine, diagonal=None,
                 scales=(0.5, 1.0), shape_model_cls=OrthoPDM,
                 max_shape_components=None, max_appearance_components=None,
                 batch_size=None):

        checks.check_diagonal(diagonal)
        scales = checks.check_scales(scales)
        n_scales = len(scales)
        holistic_features = checks.check_callable(holistic_features, n_scales)
        shape_model_cls = checks.check_callable(shape_model_cls, n_scales)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_scales, 'max_shape_components')
        max_appearance_components = checks.check_max_components(
            max_appearance_components, n_scales, 'max_appearance_components')

        self.holistic_features = holistic_features
        self.transform = transform
        self.diagonal = diagonal
        self.scales = scales
        self.max_shape_components = max_shape_components
        self.max_appearance_components = max_appearance_components
        self.reference_shape = reference_shape
        self._shape_model_cls = shape_model_cls
        self.shape_models = []
        self.appearance_models = []

        # Train AAM
        self._train(images, increment=False, group=group, verbose=verbose,
                    batch_size=batch_size)
예제 #7
0
    def __init__(self,
                 images,
                 group=None,
                 holistic_features=no_op,
                 reference_shape=None,
                 diagonal=None,
                 scales=(0.5, 1.0),
                 expert_ensemble_cls=CorrelationFilterExpertEnsemble,
                 patch_shape=(17, 17),
                 context_shape=(34, 34),
                 sample_offsets=None,
                 transform=DifferentiablePiecewiseAffine,
                 shape_model_cls=OrthoPDM,
                 max_shape_components=None,
                 max_appearance_components=None,
                 sigma=None,
                 boundary=3,
                 response_covariance=2,
                 patch_normalisation=no_op,
                 cosine_mask=True,
                 verbose=False):
        # Check parameters
        checks.check_diagonal(diagonal)
        scales = checks.check_scales(scales)
        n_scales = len(scales)
        holistic_features = checks.check_callable(holistic_features, n_scales)
        shape_model_cls = checks.check_callable(shape_model_cls, n_scales)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_scales, 'max_shape_components')
        max_appearance_components = checks.check_max_components(
            max_appearance_components, n_scales, 'max_appearance_components')
        # Assign attributes
        self.expert_ensemble_cls = checks.check_callable(
            expert_ensemble_cls, n_scales)
        self.expert_ensembles = []
        self.patch_shape = checks.check_patch_shape(patch_shape, n_scales)
        self.context_shape = checks.check_patch_shape(context_shape, n_scales)
        self.holistic_features = holistic_features
        self.transform = transform
        self.diagonal = diagonal
        self.scales = scales
        self.max_shape_components = max_shape_components
        self.max_appearance_components = max_appearance_components
        self.reference_shape = reference_shape
        self.shape_model_cls = shape_model_cls
        self.sigma = sigma
        self.boundary = boundary
        self.sample_offsets = sample_offsets
        self.response_covariance = response_covariance
        self.patch_normalisation = patch_normalisation
        self.cosine_mask = cosine_mask
        self.shape_models = []
        self.appearance_models = []
        self.expert_ensembles = []

        self._train(images=images, group=group, verbose=verbose)
예제 #8
0
    def __init__(self, images, group=None, appearance_graph=None,
                 shape_graph=None, deformation_graph=None,
                 holistic_features=no_op, reference_shape=None, diagonal=None,
                 scales=(0.5, 1.0), patch_shape=(17, 17),
                 patch_normalisation=no_op, use_procrustes=True,
                 precision_dtype=np.float32, max_shape_components=None,
                 n_appearance_components=None, can_be_incremented=False,
                 verbose=False, batch_size=None):
        # Check parameters
        checks.check_diagonal(diagonal)
        scales = checks.check_scales(scales)
        n_scales = len(scales)
        holistic_features = checks.check_callable(holistic_features, n_scales)
        patch_shape = checks.check_patch_shape(patch_shape, n_scales)
        patch_normalisation = checks.check_callable(patch_normalisation,
                                                    n_scales)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_scales, 'max_shape_components')
        n_appearance_components = checks.check_max_components(
            n_appearance_components, n_scales, 'n_appearance_components')

        # Assign attributes
        self.diagonal = diagonal
        self.scales = scales
        self.holistic_features = holistic_features
        self.patch_shape = patch_shape
        self.patch_normalisation = patch_normalisation
        self.reference_shape = reference_shape
        self.use_procrustes = use_procrustes
        self.is_incremental = can_be_incremented
        self.precision_dtype = precision_dtype
        self.max_shape_components = max_shape_components
        self.n_appearance_components = n_appearance_components

        # Check provided graphs
        self.appearance_graph = checks.check_graph(
            appearance_graph, UndirectedGraph, 'appearance_graph', n_scales)
        self.shape_graph = checks.check_graph(shape_graph, UndirectedGraph,
                                              'shape_graph', n_scales)
        self.deformation_graph = checks.check_graph(
            deformation_graph, [DirectedGraph, Tree], 'deformation_graph',
            n_scales)

        # Initialize models' lists
        self.shape_models = []
        self.appearance_models = []
        self.deformation_models = []

        # Train APS
        self._train(images, increment=False, group=group, batch_size=batch_size,
                    verbose=verbose)
예제 #9
0
    def __init__(self, images, group=None, verbose=False, batch_size=None,
                 diagonal=None, scales=(0.5, 1), holistic_features=no_op,
                 shape_model_cls=OrthoPDM,
                 expert_ensemble_cls=CorrelationFilterExpertEnsemble,
                 max_shape_components=None, reference_shape=None):
        scales = checks.check_scales(scales)
        n_scales = len(scales)
        self.diagonal = checks.check_diagonal(diagonal)
        self.scales = scales
        self.holistic_features = checks.check_callable(holistic_features,
                                                       self.n_scales)
        self.expert_ensemble_cls = checks.check_algorithm_cls(
            expert_ensemble_cls, self.n_scales, ExpertEnsemble)
        shape_model_cls = checks.check_callable(shape_model_cls, n_scales)

        self.max_shape_components = checks.check_max_components(
            max_shape_components, self.n_scales, 'max_shape_components')
        self.reference_shape = reference_shape
        self.shape_models = []
        self._shape_model_cls = shape_model_cls
        self.expert_ensembles = []

        # Train CLM
        self._train(images, increment=False, group=group, verbose=verbose,
                    batch_size=batch_size)
예제 #10
0
    def __init__(self,
                 classifier_trainers=linear_svm_lr,
                 patch_shape=(5, 5),
                 features=sparse_hog,
                 normalization_diagonal=None,
                 n_levels=3,
                 downscale=1.1,
                 scaled_shape_models=True,
                 max_shape_components=None,
                 boundary=3):

        # general deformable model checks
        checks.check_n_levels(n_levels)
        checks.check_downscale(downscale)
        checks.check_normalization_diagonal(normalization_diagonal)
        checks.check_boundary(boundary)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_levels, 'max_shape_components')
        features = checks.check_features(features, n_levels)

        # CLM specific checks
        classifier_trainers = check_classifier_trainers(
            classifier_trainers, n_levels)
        patch_shape = check_patch_shape(patch_shape)

        # store parameters
        self.classifier_trainers = classifier_trainers
        self.patch_shape = patch_shape
        self.features = features
        self.normalization_diagonal = normalization_diagonal
        self.n_levels = n_levels
        self.downscale = downscale
        self.scaled_shape_models = scaled_shape_models
        self.max_shape_components = max_shape_components
        self.boundary = boundary
예제 #11
0
    def __init__(self, images, group=None, verbose=False, batch_size=None,
                 diagonal=None, scales=(0.5, 1), holistic_features=no_op,
                 # shape_model_cls=build_normalised_pca_shape_model,
                 expert_ensemble_cls=CorrelationFilterExpertEnsemble,
                 max_shape_components=None, reference_shape=None,
                 shape_forgetting_factor=1.0):
        self.diagonal = checks.check_diagonal(diagonal)
        self.scales = checks.check_scales(scales)
        self.holistic_features = checks.check_features(holistic_features,
                                                       self.n_scales)
        # self.shape_model_cls = checks.check_algorithm_cls(
        #     shape_model_cls, self.n_scales, ShapeModel)
        self.expert_ensemble_cls = checks.check_algorithm_cls(
            expert_ensemble_cls, self.n_scales, ExpertEnsemble)

        self.max_shape_components = checks.check_max_components(
            max_shape_components, self.n_scales, 'max_shape_components')
        self.shape_forgetting_factor = shape_forgetting_factor
        self.reference_shape = reference_shape
        self.shape_models = []
        self.expert_ensembles = []

        # Train CLM
        self._train(images, increment=False, group=group, verbose=verbose,
                    batch_size=batch_size)
예제 #12
0
 def __init__(self, template, shapes, group=None, holistic_features=no_op,
              reference_shape=None, diagonal=None, scales=(0.5, 1.0),
              transform=DifferentiablePiecewiseAffine,
              shape_model_cls=OrthoPDM, max_shape_components=None,
              verbose=False, batch_size=None):
     # Check arguments
     checks.check_diagonal(diagonal)
     n_scales = len(scales)
     scales = checks.check_scales(scales)
     holistic_features = checks.check_callable(holistic_features, n_scales)
     max_shape_components = checks.check_max_components(
         max_shape_components, n_scales, 'max_shape_components')
     shape_model_cls = checks.check_callable(shape_model_cls, n_scales)
     # Assign attributes
     self.holistic_features = holistic_features
     self.transform = transform
     self.diagonal = diagonal
     self.scales = scales
     self.max_shape_components = max_shape_components
     self.reference_shape = reference_shape
     self.shape_models = []
     self.warped_templates = []
     self._shape_model_cls = shape_model_cls
     # Train ATM
     self._train(template, shapes, increment=False, group=group,
                 verbose=verbose, batch_size=batch_size)
예제 #13
0
    def __init__(self,
                 images,
                 group=None,
                 verbose=False,
                 batch_size=None,
                 diagonal=None,
                 scales=(0.5, 1),
                 holistic_features=no_op,
                 shape_model_cls=OrthoPDM,
                 expert_ensemble_cls=CorrelationFilterExpertEnsemble,
                 max_shape_components=None,
                 reference_shape=None):
        scales = checks.check_scales(scales)
        n_scales = len(scales)
        self.diagonal = checks.check_diagonal(diagonal)
        self.scales = scales
        self.holistic_features = checks.check_callable(holistic_features,
                                                       self.n_scales)
        self.expert_ensemble_cls = checks.check_algorithm_cls(
            expert_ensemble_cls, self.n_scales, ExpertEnsemble)
        shape_model_cls = checks.check_callable(shape_model_cls, n_scales)

        self.max_shape_components = checks.check_max_components(
            max_shape_components, self.n_scales, 'max_shape_components')
        self.reference_shape = reference_shape
        self.shape_models = []
        self._shape_model_cls = shape_model_cls
        self.expert_ensembles = []

        # Train CLM
        self._train(images,
                    increment=False,
                    group=group,
                    verbose=verbose,
                    batch_size=batch_size)
예제 #14
0
    def __init__(self, classifier_trainers=linear_svm_lr, patch_shape=(5, 5),
                 features=sparse_hog, normalization_diagonal=None,
                 n_levels=3, downscale=1.1, scaled_shape_models=True,
                 max_shape_components=None, boundary=3):

        # general deformable model checks
        checks.check_n_levels(n_levels)
        checks.check_downscale(downscale)
        checks.check_normalization_diagonal(normalization_diagonal)
        checks.check_boundary(boundary)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_levels, 'max_shape_components')
        features = checks.check_features(features, n_levels)

        # CLM specific checks
        classifier_trainers = check_classifier_trainers(classifier_trainers, n_levels)
        patch_shape = check_patch_shape(patch_shape)

        # store parameters
        self.classifier_trainers = classifier_trainers
        self.patch_shape = patch_shape
        self.features = features
        self.normalization_diagonal = normalization_diagonal
        self.n_levels = n_levels
        self.downscale = downscale
        self.scaled_shape_models = scaled_shape_models
        self.max_shape_components = max_shape_components
        self.boundary = boundary
예제 #15
0
    def __init__(
        self,
        template,
        shapes,
        group=None,
        verbose=False,
        reference_shape=None,
        holistic_features=no_op,
        shape_model_cls=OrthoPDM,
        transform=DifferentiablePiecewiseAffine,
        diagonal=None,
        scales=(0.5, 1.0),
        max_shape_components=None,
        batch_size=None,
    ):

        checks.check_diagonal(diagonal)
        n_scales = len(scales)
        scales = checks.check_scales(scales)
        holistic_features = checks.check_callable(holistic_features, n_scales)
        max_shape_components = checks.check_max_components(max_shape_components, n_scales, "max_shape_components")
        shape_model_cls = checks.check_callable(shape_model_cls, n_scales)

        self.holistic_features = holistic_features
        self.transform = transform
        self.diagonal = diagonal
        self.scales = scales
        self.max_shape_components = max_shape_components
        self.reference_shape = reference_shape
        self.shape_models = []
        self.warped_templates = []
        self._shape_model_cls = shape_model_cls

        # Train ATM
        self._train(template, shapes, increment=False, group=group, verbose=verbose, batch_size=batch_size)
예제 #16
0
파일: base.py 프로젝트: jabooth/menpofit
    def __init__(self, images, group=None, holistic_features=no_op,
                 reference_shape=None, diagonal=None, scales=(0.5, 1),
                 patch_shape=(17, 17), patch_normalisation=no_op,
                 context_shape=(34, 34), cosine_mask=True, sample_offsets=None,
                 shape_model_cls=OrthoPDM,
                 expert_ensemble_cls=CorrelationFilterExpertEnsemble,
                 max_shape_components=None, verbose=False, batch_size=None):
        self.scales = checks.check_scales(scales)
        n_scales = len(scales)
        self.diagonal = checks.check_diagonal(diagonal)
        self.holistic_features = checks.check_callable(holistic_features,
                                                       n_scales)
        self.expert_ensemble_cls = checks.check_callable(expert_ensemble_cls,
                                                         n_scales)
        self._shape_model_cls = checks.check_callable(shape_model_cls,
                                                      n_scales)
        self.max_shape_components = checks.check_max_components(
            max_shape_components, n_scales, 'max_shape_components')
        self.reference_shape = reference_shape
        self.patch_shape = checks.check_patch_shape(patch_shape, n_scales)
        self.patch_normalisation = patch_normalisation
        self.context_shape = checks.check_patch_shape(context_shape, n_scales)
        self.cosine_mask = cosine_mask
        self.sample_offsets = sample_offsets
        self.shape_models = []
        self.expert_ensembles = []

        # Train CLM
        self._train(images, increment=False, group=group, verbose=verbose,
                    batch_size=batch_size)
예제 #17
0
파일: base.py 프로젝트: jabooth/menpofit
 def __init__(self, images, group=None, holistic_features=no_op,
              reference_shape=None, diagonal=None, scales=(0.5, 1.0),
              expert_ensemble_cls=CorrelationFilterExpertEnsemble,
              patch_shape=(17, 17), context_shape=(34, 34),
              sample_offsets=None,  transform=DifferentiablePiecewiseAffine,
              shape_model_cls=OrthoPDM, max_shape_components=None,
              max_appearance_components=None, sigma=None, boundary=3,
              response_covariance=2, patch_normalisation=no_op,
              cosine_mask=True, verbose=False):
     # Check parameters
     checks.check_diagonal(diagonal)
     scales = checks.check_scales(scales)
     n_scales = len(scales)
     holistic_features = checks.check_callable(holistic_features, n_scales)
     shape_model_cls = checks.check_callable(shape_model_cls, n_scales)
     max_shape_components = checks.check_max_components(
         max_shape_components, n_scales, 'max_shape_components')
     max_appearance_components = checks.check_max_components(
         max_appearance_components, n_scales, 'max_appearance_components')
     # Assign attributes
     self.expert_ensemble_cls = checks.check_callable(expert_ensemble_cls,
                                                      n_scales)
     self.expert_ensembles = []
     self.patch_shape = checks.check_patch_shape(patch_shape, n_scales)
     self.context_shape = checks.check_patch_shape(context_shape, n_scales)
     self.holistic_features = holistic_features
     self.transform = transform
     self.diagonal = diagonal
     self.scales = scales
     self.max_shape_components = max_shape_components
     self.max_appearance_components = max_appearance_components
     self.reference_shape = reference_shape
     self.shape_model_cls = shape_model_cls
     self.sigma = sigma
     self.boundary = boundary
     self.sample_offsets = sample_offsets
     self.response_covariance = response_covariance
     self.patch_normalisation = patch_normalisation
     self.cosine_mask = cosine_mask
     self.shape_models = []
     self.appearance_models = []
     self.expert_ensembles = []
     
     self._train(images=images, group=group, verbose=verbose)
예제 #18
0
    def __init__(self, adjacency_array_appearance=None, gaussian_per_patch=True,
                 adjacency_array_deformation=None, root_vertex_deformation=None,
                 adjacency_array_shape=None, features=no_op,
                 patch_shape=(17, 17), normalization_diagonal=None, n_levels=2,
                 downscale=2, scaled_shape_models=False, use_procrustes=True,
                 max_shape_components=None, n_appearance_parameters=None):
        # check parameters
        checks.check_n_levels(n_levels)
        checks.check_downscale(downscale)
        checks.check_normalization_diagonal(normalization_diagonal)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_levels, 'max_shape_components')
        features = checks.check_features(features, n_levels)
        n_appearance_parameters = _check_n_parameters(
            n_appearance_parameters, n_levels, 'n_appearance_parameters')

        # appearance graph
        if adjacency_array_appearance is None:
            self.graph_appearance = None
        elif adjacency_array_appearance == 'yorgos':
            self.graph_appearance = 'yorgos'
        else:
            self.graph_appearance = UndirectedGraph(adjacency_array_appearance)

        # shape graph
        if adjacency_array_shape is None:
            self.graph_shape = None
        else:
            self.graph_shape = UndirectedGraph(adjacency_array_shape)

        # check adjacency_array_deformation, root_vertex_deformation
        if adjacency_array_deformation is None:
            self.graph_deformation = None
            if root_vertex_deformation is None:
                self.root_vertex = 0
        else:
            if root_vertex_deformation is None:
                self.graph_deformation = DirectedGraph(adjacency_array_deformation)
            else:
                self.graph_deformation = Tree(adjacency_array_deformation,
                                              root_vertex_deformation)

        # store parameters
        self.features = features
        self.patch_shape = patch_shape
        self.normalization_diagonal = normalization_diagonal
        self.n_levels = n_levels
        self.downscale = downscale
        self.scaled_shape_models = scaled_shape_models
        self.max_shape_components = max_shape_components
        self.n_appearance_parameters = n_appearance_parameters
        self.use_procrustes = use_procrustes
        self.gaussian_per_patch = gaussian_per_patch
    def __init__(
            self,
            images,
            group=None,
            holistic_features=no_op,
            reference_shape=None,
            diagonal=None,
            scales=(1, ),  # scales=(0.5, 1)
            patch_shape=(8, 8),
            patch_normalisation=no_op,
            context_shape=(8, 8),
            cosine_mask=True,
            sample_offsets=None,
            shape_model_cls=OrthoPDM,
            expert_ensemble_cls=CorrelationFilterExpertEnsemble,
            max_shape_components=None,
            verbose=False,
            batch_size=None):
        self.scales = checks.check_scales(scales)
        n_scales = len(scales)
        self.diagonal = checks.check_diagonal(diagonal)
        self.holistic_features = checks.check_callable(holistic_features,
                                                       n_scales)
        self.expert_ensemble_cls = checks.check_callable(
            expert_ensemble_cls, n_scales)
        self._shape_model_cls = checks.check_callable(shape_model_cls,
                                                      n_scales)
        self.max_shape_components = checks.check_max_components(
            max_shape_components, n_scales, 'max_shape_components')
        self.reference_shape = reference_shape
        self.patch_shape = checks.check_patch_shape(patch_shape, n_scales)
        self.patch_normalisation = patch_normalisation
        self.context_shape = checks.check_patch_shape(context_shape, n_scales)
        self.cosine_mask = cosine_mask
        self.sample_offsets = sample_offsets
        self.shape_models = []
        self.expert_ensembles = []

        # Train CLM
        self._train(images,
                    increment=False,
                    group=group,
                    verbose=verbose,
                    batch_size=batch_size)
예제 #20
0
    def __init__(self,
                 adjacency_array_appearance=None,
                 gaussian_per_patch=True,
                 adjacency_array_deformation=None,
                 root_vertex_deformation=None,
                 adjacency_array_shape=None,
                 features=no_op,
                 patch_shape=(17, 17),
                 normalization_diagonal=None,
                 n_levels=2,
                 downscale=2,
                 scaled_shape_models=False,
                 use_procrustes=True,
                 max_shape_components=None,
                 n_appearance_parameters=None):
        # check parameters
        checks.check_n_levels(n_levels)
        checks.check_downscale(downscale)
        checks.check_normalization_diagonal(normalization_diagonal)
        max_shape_components = checks.check_max_components(
            max_shape_components, n_levels, 'max_shape_components')
        features = checks.check_features(features, n_levels)
        n_appearance_parameters = _check_n_parameters(
            n_appearance_parameters, n_levels, 'n_appearance_parameters')

        # appearance graph
        if adjacency_array_appearance is None:
            self.graph_appearance = None
        elif adjacency_array_appearance == 'yorgos':
            self.graph_appearance = 'yorgos'
        else:
            self.graph_appearance = UndirectedGraph(adjacency_array_appearance)

        # shape graph
        if adjacency_array_shape is None:
            self.graph_shape = None
        else:
            self.graph_shape = UndirectedGraph(adjacency_array_shape)

        # check adjacency_array_deformation, root_vertex_deformation
        if adjacency_array_deformation is None:
            self.graph_deformation = None
            if root_vertex_deformation is None:
                self.root_vertex = 0
        else:
            if root_vertex_deformation is None:
                self.graph_deformation = DirectedGraph(
                    adjacency_array_deformation)
            else:
                self.graph_deformation = Tree(adjacency_array_deformation,
                                              root_vertex_deformation)

        # store parameters
        self.features = features
        self.patch_shape = patch_shape
        self.normalization_diagonal = normalization_diagonal
        self.n_levels = n_levels
        self.downscale = downscale
        self.scaled_shape_models = scaled_shape_models
        self.max_shape_components = max_shape_components
        self.n_appearance_parameters = n_appearance_parameters
        self.use_procrustes = use_procrustes
        self.gaussian_per_patch = gaussian_per_patch