예제 #1
0
파일: layers.py 프로젝트: qixiuai/mesh
def attention_bias_local_block(mesh, block_length, memory_length,
                               dtype=tf.int32):
  """Bias for attention for local blocks where attention to right is disallowed.

  Create the bias matrix by using two separate masks, one for the memory part
  which doesn't overlap with the query and second which interacts with the query
  and should be disallowed to look to the right of the current query position.

  Args:
    mesh: a MeshTensorflow object
    block_length: a mtf.Dimension
    memory_length: a mtf.Dimension
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [block_length, memory_length]
  """
  memory_length = mtf.Dimension(memory_length.name, block_length.size)
  memory_mask = mtf.zeros(mesh, [block_length, memory_length], dtype=dtype)

  mask = mtf.cast(mtf.less(mtf.range(mesh, block_length, dtype=dtype),
                           mtf.range(mesh, memory_length, dtype=dtype)),
                  dtype=dtype)
  mask = mtf.cast(
      mtf.concat([memory_mask, mask], memory_length.name),
      dtype=tf.float32) * -1e9
  return mask
예제 #2
0
    def _is_finished(i, unused_alive_seq, alive_log_probs, unused_finished_seq,
                     finished_scores, finished_in_finished, *unused_states):
        """Checking termination condition.

    We terminate when we decoded up to decode_length or the lowest scoring item
    in finished has a greater score that the highest prob item in alive divided
    by the max length penalty

    Args:
      i: loop index
      alive_log_probs: probabilities of the beams. [batch_size, beam_size]
      finished_scores: scores for each of these sequences.
        [batch_size, beam_size]
      finished_in_finished: finished bools for each of these sequences.
        [batch_size, beam_size]

    Returns:
      Bool.
    """
        # TODO(noam): support a different decode length...
        # decode_length = mtf.constant(mesh, length_dim.size, dtype=tf.int32)

        # del alive_log_probs, finished_scores, finished_in_finished
        # return mtf.less(i, length_dim.size)
        if not stop_early:
            return mtf.less(i, decode_length)
        max_length_penalty = mtf.pow(
            ((5. + mtf.cast(decode_length, finished_scores.dtype)) / 6.),
            alpha)
        # The best possible score of the most likely alive sequence.
        lower_bound_alive_scores = mtf.gather(
            alive_log_probs, mtf.constant(mesh, 0, dtype=tf.int32),
            beam_dim) / max_length_penalty

        # Now to compute the lowest score of a finished sequence in finished
        # If the sequence isn't finished, we multiply it's score by 0. since
        # scores are all -ve, taking the min will give us the score of the lowest
        # finished item.
        lowest_score_of_finished_in_finished = mtf.reduce_min(
            finished_scores *
            mtf.cast(finished_in_finished, finished_scores.dtype),
            reduced_dim=beam_dim)

        # If none of the sequences have finished, then the min will be 0 and
        # we have to replace it by -ve INF if it is. The score of any seq in alive
        # will be much higher than -ve INF and the termination condition will not
        # be met.
        lowest_score_of_finished_in_finished += ((1. - mtf.cast(
            mtf.reduce_any(finished_in_finished, reduced_dim=beam_dim),
            finished_scores.dtype)) * -INF)

        bound_is_met = mtf.reduce_all(
            mtf.greater(lowest_score_of_finished_in_finished,
                        lower_bound_alive_scores))
        return mtf.logical_and(mtf.less(i, decode_length),
                               mtf.logical_not(bound_is_met))
예제 #3
0
파일: layers.py 프로젝트: qixiuai/mesh
def attention_bias_local_2d_block(mesh,
                                  h_dim,
                                  w_dim,
                                  memory_h_dim,
                                  memory_w_dim,
                                  dtype=tf.int32):
  """Bias for attention for local blocks where attention to right is disallowed.

  Create the bias matrix by using two separate masks, one for the memory part
  which doesn't overlap with the query and second which interacts with the query
  and should be disallowed to look to the right of the current query position.

  Args:
    mesh: a MeshTensorflow object
    h_dim: a mtf.Dimension
    w_dim: a mtf.Dimension
    memory_h_dim: a mtf.Dimension
    memory_w_dim: a mtf.Dimension
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [block_length, memory_length]
  """
  memory_height = mtf.Dimension(memory_h_dim.name, h_dim.size)
  memory_width = mtf.Dimension(memory_w_dim.name, w_dim.size)
  mask_top_visible = mtf.zeros(mesh, [h_dim, memory_height], dtype=dtype)
  mask_left_visible = mtf.zeros(mesh, [w_dim, memory_width], dtype=dtype)
  mask_query = mtf.greater(
      mtf.range(mesh, memory_height, dtype=tf.int32),
      mtf.range(mesh, memory_width, dtype=dtype))
  width_mask = mtf.concat([mask_left_visible, mask_query], memory_width.name)
  mask = mtf.cast(
      mtf.concat([mask_top_visible, width_mask], memory_height.name),
      dtype=tf.float32) * -1e9
  return mask
예제 #4
0
파일: layers.py 프로젝트: qixiuai/mesh
def dense(x, output_dim, reduced_dims=None, expert_dims=None,
          use_bias=True, activation=None,
          master_dtype=tf.float32,
          slice_dtype=tf.float32,
          variable_dtype=None,
          name=None):
  """Dense layer doing (kernel*x + bias) computation.

  Args:
    x: a mtf.Tensor of shape [..., reduced_dims].
    output_dim: a mtf.Dimension
    reduced_dims: an optional list of mtf.Dimensions of x to be reduced. If
      omitted, we reduce the last dimension.
    expert_dims: an optional list of mtf.Dimension which represent different
      experts. Different experts get different weights.
    use_bias: a boolean, whether to add bias.
    activation: an optional function from mtf.Tensor to mtf.Tensor
    master_dtype: a tf.dtype (deprecated - use variable_dtype)
    slice_dtype: a tf.dtype (deprecated - use variable_dtype)
    variable_dtype: a mtf.VariableDType
    name: a string. variable scope.

  Returns:
    a mtf.Tensor of shape [..., output_dim].
  """
  if variable_dtype is None:
    variable_dtype = mtf.VariableDType(master_dtype, slice_dtype, x.dtype)
  if expert_dims is None:
    expert_dims = []
  if reduced_dims is None:
    reduced_dims = x.shape.dims[-1:]
  w_shape = mtf.Shape(expert_dims + reduced_dims + [output_dim])
  output_shape = mtf.Shape(
      [d for d in x.shape.dims if d not in reduced_dims] + [output_dim])

  with tf.variable_scope(name, default_name="dense"):
    stddev = mtf.list_product(d.size for d in reduced_dims) ** -0.5
    w = mtf.get_variable(
        x.mesh,
        "kernel",
        w_shape,
        initializer=tf.random_normal_initializer(stddev=stddev),
        dtype=variable_dtype)
    w = mtf.cast(w, x.dtype)
    y = mtf.einsum([x, w], output_shape)
    if use_bias:
      b = mtf.get_variable(
          x.mesh,
          "bias",
          mtf.Shape(expert_dims + [output_dim]),
          initializer=tf.zeros_initializer(),
          dtype=variable_dtype)
      y += b
    if activation is not None:
      y = activation(y)
    return y
예제 #5
0
파일: layers.py 프로젝트: qixiuai/mesh
def attention_mask_autoregressive(query_pos, dtype=tf.float32):
  """Bias for self-attention where attention to the right is disallowed.

  Args:
    query_pos: a mtf.Tensor with shape [..., length_dim]
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [..., length_dim, memory_length_dim]
  """
  memory_pos = rename_length_to_memory_length(query_pos)
  return mtf.cast(mtf.less(query_pos, memory_pos), dtype) * -1e9
예제 #6
0
파일: layers.py 프로젝트: qixiuai/mesh
def attention_mask_ignore_padding(inputs, dtype=tf.float32):
  """Bias for encoder-decoder attention.

  Args:
    inputs: a mtf.Tensor with shape [..., length_dim]
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [..., memory_length_dim]
  """
  inputs = rename_length_to_memory_length(inputs)
  return mtf.cast(mtf.equal(inputs, 0), dtype) * -1e9
예제 #7
0
파일: layers.py 프로젝트: qixiuai/mesh
def attention_mask_same_segment(
    query_segment, memory_segment=None, dtype=tf.float32):
  """Bias for attention where attention between segments is disallowed.

  Args:
    query_segment: a mtf.Tensor with shape [..., length_dim]
    memory_segment: a mtf.Tensor with shape [..., memory_length_dim]
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [..., length_dim, memory_length_dim]
  """
  memory_segment = rename_length_to_memory_length(
      memory_segment or query_segment)
  return mtf.cast(mtf.not_equal(query_segment, memory_segment), dtype) * -1e9
예제 #8
0
    def grow_finished(finished_seq, finished_scores, finished_flags, curr_seq,
                      curr_scores, curr_finished):
        """Given sequences and scores, will gather the top k=beam size sequences.

    Args:
      finished_seq: Current finished sequences.
        [batch, beam, length]
      finished_scores: scores for each of these sequences.
        [batch, beam]
      finished_flags: finished bools for each of these sequences.
        [batch, beam]
      curr_seq: current topk sequence that has been grown by one position.
        [batch, beam, length]
      curr_scores: scores for each of these sequences. [batch, beam]
      curr_finished: Finished flags for each of these sequences.
        [batch, beam]
    Returns:
      Tuple of
        (Topk sequences based on scores,
         log probs of these sequences,
         Finished flags of these sequences,
         None (no states))
    """

        # Set the scores of the unfinished seq in curr_seq to large negative
        # values
        curr_scores += (1. - mtf.cast(curr_finished, curr_scores.dtype)) * -INF
        unused_batch_dim, beam_dim, unused_length_dim = finished_seq.shape.dims

        # concatenating the sequences and scores along beam axis
        def _my_concat(a, b):
            a = mtf.rename_dimension(a, "beam", "triple_beam")
            b = mtf.rename_dimension(b, "double_beam", "triple_beam")
            return mtf.concat([a, b], "triple_beam")

        curr_finished_seq = _my_concat(finished_seq, curr_seq)
        curr_finished_scores = _my_concat(finished_scores, curr_scores)
        curr_finished_flags = _my_concat(finished_flags, curr_finished)
        return compute_topk_scores_and_seq(curr_finished_seq,
                                           curr_finished_scores,
                                           curr_finished_scores,
                                           curr_finished_flags, beam_dim,
                                           "grow_finished")
예제 #9
0
    def grow_alive(curr_seq, curr_scores, curr_log_probs, curr_finished):
        """Given sequences and scores, will gather the top k=beam size sequences.

    Args:
      curr_seq: current topk sequence that has been grown by one position.
        [batch, beam, length]
      curr_scores: scores for each of these sequences. [batch_size, beam_size]
      curr_log_probs: log probs for each of these sequences.
        [batch, beam]
      curr_finished: Finished flags for each of these sequences.
        [batch, beam]
    Returns:
      Tuple of
        (Topk sequences based on scores,
         log probs of these sequences,
         Finished flags of these sequences)
    """
        # Set the scores of the finished seq in curr_seq to large negative
        # values
        curr_scores += mtf.cast(curr_finished, curr_scores.dtype) * -INF
        return compute_topk_scores_and_seq(curr_seq, curr_scores,
                                           curr_log_probs, curr_finished,
                                           beam_dim, "grow_alive")
예제 #10
0
    def inner_loop(i, alive_seq, alive_log_probs, finished_seq,
                   finished_scores, finished_flags, *states):
        """Inner beam search loop.

    There are three groups of tensors, alive, finished, and topk.
    The alive group contains information about the current alive sequences
    The topk group contains information about alive + topk current decoded words
    the finished group contains information about finished sentences, that is,
    the ones that have decoded to <EOS>. These are what we return.
    The general beam search algorithm is as follows:
    While we haven't terminated (pls look at termination condition)
      1. Grow the current alive to get beam*2 topk sequences
      2. Among the topk, keep the top beam_size ones that haven't reached EOS
      into alive
      3. Among the topk, keep the top beam_size ones have reached EOS into
      finished
    Repeat
    To make things simple with using fixed size tensors, we will end
    up inserting unfinished sequences into finished in the beginning. To stop
    that we add -ve INF to the score of the unfinished sequence so that when a
    true finished sequence does appear, it will have a higher score than all the
    unfinished ones.

    Args:
      i: loop index
      alive_seq: Topk sequences decoded so far [batch_size, beam_size, i+1]
      alive_log_probs: probabilities of the beams. [batch_size, beam_size]
      finished_seq: Current finished sequences.
        [batch_size, beam_size, i+1]
      finished_scores: scores for each of these sequences.
        [batch_size, beam_size]
      finished_flags: finished bools for each of these sequences.
        [batch_size, beam_size]
      *states: mtf Tensors

    Returns:
      Tuple of
        (Incremented loop index
         New alive sequences,
         Log probs of the alive sequences,
         New finished sequences,
         Scores of the new finished sequences,
         Flags indicating which sequence in finished as reached EOS,
         dict of final decoding states)
    """
        states = [
            mtf.replace_dimensions(state, batch_and_beam_dim,
                                   [batch_dim, beam_dim]) for state in states
        ]
        # Each inner loop, we carry out three steps:
        # 1. Get the current topk items.
        # 2. Extract the ones that have finished and haven't finished
        # 3. Recompute the contents of finished based on scores.
        (top2k_seq, top2k_log_probs, top2k_scores, top2k_finished, new_states,
         first_selector) = grow_topk(i, alive_seq, alive_log_probs, states)
        with tf.variable_scope("grow_alive"):
            alive_seq, alive_log_probs, _, second_selector = grow_alive(
                top2k_seq, top2k_scores, top2k_log_probs, top2k_finished)
        with tf.variable_scope("grow_finished"):
            finished_seq, finished_scores, finished_flags, _ = grow_finished(
                finished_seq, finished_scores, finished_flags, top2k_seq,
                top2k_scores, top2k_finished)
        old_beam_dim = mtf.Dimension("old_beam", beam_dim.size)
        selector = mtf.einsum([
            mtf.rename_dimension(first_selector, beam_dim.name,
                                 old_beam_dim.name), second_selector
        ],
                              output_shape=[batch_dim, old_beam_dim, beam_dim])
        gathered_states = []
        if use_tpu and layout is not None and mesh_shape is not None:
            # This hack combines the beam dimension with some of the batch dimension.
            # It makes gathering faster on TPU.
            #
            # Instead of multiplying by a [beam, beam] selector matrix, we instead
            # multiply by a [minor_batch*beam, minor_batch*beam] selector matrix.
            # This is theoretically more FLOPs, but it brings the matrix size closer
            # to the magic optimal value of 128.
            #
            # TODO(noam): file a bug with the XLA team to do this automatically
            major_batch_size = mtf.tensor_dim_to_mesh_dim_size(
                layout, mesh_shape, batch_dim)
            major_batch = mtf.Dimension(batch_dim.name, major_batch_size)
            minor_batch = mtf.Dimension("minor_batch",
                                        batch_dim.size // major_batch.size)
            old_minor_batch = mtf.Dimension("old_minor_batch",
                                            minor_batch.size)
            old_combined = mtf.Dimension("old_combined",
                                         minor_batch.size * beam_dim.size)
            combined = mtf.Dimension("new_combined", old_combined.size)
            same_minor_batch = mtf.to_float(
                mtf.equal(mtf.range(mesh, old_minor_batch, tf.float32),
                          mtf.range(mesh, minor_batch, tf.float32)))
            selector = mtf.reshape(
                selector, [major_batch, minor_batch, old_beam_dim, beam_dim])
            selector = mtf.einsum([selector, same_minor_batch],
                                  output_shape=[
                                      major_batch, old_minor_batch,
                                      old_beam_dim, minor_batch, beam_dim
                                  ],
                                  reduced_dims=[])
            selector = mtf.reshape(selector,
                                   [major_batch, old_combined, combined])
            for state in new_states:
                s = mtf.replace_dimensions(state, [batch_dim, beam_dim],
                                           [major_batch, old_combined])
                s = mtf.einsum([s, mtf.cast(selector, state.dtype)],
                               reduced_dims=[old_combined],
                               output_shape=mtf.replace_dimensions(
                                   state.shape, [batch_dim, beam_dim],
                                   [major_batch, combined]))
                gathered_states.append(
                    mtf.replace_dimensions(s, [major_batch, combined],
                                           batch_and_beam_dim))
        else:
            for state in new_states:
                state = mtf.einsum([
                    mtf.rename_dimension(state, beam_dim.name,
                                         old_beam_dim.name),
                    mtf.cast(selector, state.dtype)
                ],
                                   reduced_dims=[old_beam_dim],
                                   output_shape=state.shape)
                state = mtf.replace_dimensions(state, [batch_dim, beam_dim],
                                               batch_and_beam_dim)
                gathered_states.append(state)

        return (i + 1, alive_seq, alive_log_probs, finished_seq,
                finished_scores, finished_flags) + tuple(gathered_states)
예제 #11
0
    def grow_topk(i, alive_seq, alive_log_probs, states=None):
        r"""Inner beam search loop.

    This function takes the current alive sequences, and grows them to topk
    sequences where k = 2*beam. We use 2*beam because, we could have beam_size
    number of sequences that might hit <EOS> and there will be no alive
    sequences to continue. With 2*beam_size, this will not happen. This relies
    on the assumption the vocab size is > beam size. If this is true, we'll
    have at least beam_size non <EOS> extensions if we extract the next top
    2*beam words.
    Length penalty is given by = (5+len(decode)/6) ^ -\alpha. Pls refer to
    https://arxiv.org/abs/1609.08144.

    Args:
      i: loop index
      alive_seq: Topk sequences decoded so far [batch, beam, length]
      alive_log_probs: probabilities of these sequences. [batch, beam]
      states: optional list of mtf.Tensor
    Returns:
      Tuple of
        (Topk sequences extended by the next word,
         The log probs of these sequences,
         The scores with length penalty of these sequences,
         Flags indicating which of these sequences have finished decoding,
         list of transformed decoding states)
    """
        logits, new_states = logits_fn(i, alive_seq, states)
        batch_dim, beam_dim, vocab_dim = logits.shape.dims

        # Convert logits to normalized log probs
        candidate_log_probs = mtf.log_softmax(logits, vocab_dim)

        # Multiply the probabilities by the current probabilities of the beam.
        # (batch_size, beam_size, vocab_size) + (batch_size, beam_size, 1)
        log_probs = candidate_log_probs + alive_log_probs

        length_penalty = mtf.pow(((5. + mtf.cast(i + 1, logits.dtype)) / 6.),
                                 alpha)

        # scores have shape [batch, beam, vocab]
        curr_scores = log_probs / length_penalty

        # We find the top 2k sequences to make sure we get k alive sequences.
        #
        # TODO(noam): This is inefficient.  We should separately compute the k
        # finished sequences (previously alive sequences + EOS), and the top k new
        # alive sequences.
        double_beam = mtf.Dimension("double_beam", beam_dim.size * 2)

        if use_tpu and layout is not None and mesh_shape is not None:
            # Do some partial top-k-ing first locally to avoid communication.
            # We reshape the logits from:
            #   [batch, beam, vocab] to
            #   [batch, beam, major_vocab, minor_vocab]
            # We first reduce (locally) across the minor_vocab dimension.  This makes
            # the thing we need to broadcast smaller.
            # This also enables our shortcut of only picking the top num_prefilter
            #   sequences per beam per major_vocab in the first pass.
            major_vocab_size = mtf.tensor_dim_to_mesh_dim_size(
                layout, mesh_shape, vocab_dim)
            major_vocab = mtf.Dimension(vocab_dim.name, major_vocab_size)
            minor_vocab = mtf.Dimension("minor_vocab",
                                        vocab_dim.size // major_vocab_size)
            curr_scores = mtf.reshape(
                curr_scores, [batch_dim, beam_dim, major_vocab, minor_vocab])
            prefilter = mtf.Dimension("prefilter", num_prefilter
                                      or double_beam.size)
            # shape = [batch_dim, beam_dim, major_vocab, prefilter]
            top_scores, top_minor_vocab_ids = mtf.top_k(
                curr_scores, reduced_dim=minor_vocab, k_dim=prefilter)
            combined = mtf.Dimension(
                "combined", beam_dim.size * major_vocab.size * prefilter.size)
            top_scores = mtf.reshape(top_scores, [batch_dim, combined])
            top_minor_vocab_ids = mtf.reshape(top_minor_vocab_ids,
                                              [batch_dim, combined])
            # shpae = [batch_dim, double_beam]
            # ids are indices representing (beam, major_vocab, prefilter)
            top_scores, top_combined_ids = mtf.top_k(top_scores,
                                                     reduced_dim=combined,
                                                     k_dim=double_beam)
            top_minor_vocab_ids = mtf.gather(
                top_minor_vocab_ids,
                top_combined_ids,
                combined,
                output_shape=[batch_dim, double_beam])
            top_beam_index = top_combined_ids // (major_vocab.size *
                                                  prefilter.size)
            top_combined_ids -= top_beam_index * (major_vocab.size *
                                                  prefilter.size)
            top_major_vocab_ids = top_combined_ids // prefilter.size
            top_combined_ids -= top_major_vocab_ids * prefilter.size
            top_ids = top_major_vocab_ids * minor_vocab.size + top_minor_vocab_ids
        else:
            beam_and_vocab_dim = mtf.Dimension("beam_and_vocab",
                                               beam_dim.size * vocab_dim.size)
            flat_shape = mtf.Shape([batch_dim, beam_and_vocab_dim])
            # Flatten out (beam_size, vocab_size) probs into a list of possibilities
            flat_curr_scores = mtf.reshape(curr_scores,
                                           flat_shape,
                                           name="flatten_scores")
            top_scores, top_ids = mtf.top_k(flat_curr_scores,
                                            reduced_dim=beam_and_vocab_dim,
                                            k_dim=double_beam)
            # Work out what beam the top probs are in.
            top_beam_index = top_ids // vocab_dim.size
            top_ids %= vocab_dim.size  # Unflatten the ids

        # Recovering the log probs because we will need to send them back
        top_log_probs = top_scores * length_penalty

        selector = mtf.one_hot(top_beam_index, beam_dim, dtype=tf.float32)

        def my_gather(tensor):
            return mtf.gather(tensor,
                              top_beam_index,
                              beam_dim,
                              output_shape=mtf.Shape([
                                  double_beam if d == beam_dim else d
                                  for d in tensor.shape.dims
                              ]))

        # Gather up the most probable 2*beams both for the ids and finished_in_alive
        # bools
        top_seq = my_gather(alive_seq)

        # Append the most probable alive
        top_seq += top_ids * mtf.one_hot(i, length_dim, dtype=tf.int32)
        top_finished = mtf.equal(top_ids, eos_id)

        return (top_seq, top_log_probs, top_scores, top_finished, new_states,
                selector)
예제 #12
0
파일: layers.py 프로젝트: qixiuai/mesh
def multihead_self_attention_incremental(query_antecedent,
                                         prev_k,
                                         prev_v,
                                         step_num,
                                         master_dtype,
                                         slice_dtype,
                                         name="multihead_attention"):
  """Incremental self-attention (one decode step).

  In order to use only one variable containing the four weight matrices
  packed together, we insist that the query and memory antecedents have the
  same dimensionality (io_channels) and that the keys and values have the
  same dimensionality (kv_channels).

  Args:
    query_antecedent: a mtf.Tensor with shape [batch..., io_channels]
    prev_k: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]
    prev_v: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]
    step_num: mtf Scalar with dtype tf.int32
    master_dtype: a tf.dtype
    slice_dtype: a tf.dtype
    name: an optional string.

  Returns:
    y: A mtf.Tensor with shape [batch..., io_channels]
    new_k: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]
    new_v: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]

  Raises:
    ValueError: if the dimensions do not match.
  """
  batch_dims = query_antecedent.shape.dims[:-1]
  io_channels = query_antecedent.shape.dims[-1]
  heads, memory_length, kv_channels = prev_k.shape.dims[-3:]
  with tf.variable_scope(name, default_name="multihead_attention"):
    wq, wk, wv, wo = multihead_attention_vars(
        query_antecedent.mesh, heads, io_channels, kv_channels,
        master_dtype, slice_dtype, query_antecedent.dtype)
    memory_antecedent = query_antecedent
    q = mtf.einsum(
        [query_antecedent, wq],
        mtf.Shape(batch_dims + [heads, kv_channels]))
    k = mtf.einsum(
        [memory_antecedent, wk],
        mtf.Shape(batch_dims + [heads, kv_channels]))
    v = mtf.einsum(
        [memory_antecedent, wv],
        mtf.Shape(batch_dims + [heads, kv_channels]))
    k = prev_k + mtf.multiply(
        k, mtf.one_hot(step_num, memory_length, dtype=prev_k.dtype),
        output_shape=prev_k.shape)
    v = prev_v + mtf.multiply(
        v, mtf.one_hot(step_num, memory_length, dtype=prev_v.dtype),
        output_shape=prev_v.shape)

    mask = mtf.cast(
        mtf.greater(mtf.range(
            query_antecedent.mesh, memory_length, dtype=tf.int32), step_num),
        q.dtype) * -1e9
    o = dot_product_attention(q, k, v, mask)
    y = mtf.einsum([o, wo], query_antecedent.shape)
    return y, k, v
예제 #13
0
파일: layers.py 프로젝트: qixiuai/mesh
def masked_local_attention_1d(x,
                              kv_channels,
                              heads,
                              window_size=128,
                              master_dtype=tf.float32,
                              slice_dtype=tf.float32,
                              length_per_split=None,
                              return_kv=None,
                              params=None,
                              name=None):
  """Attention to the source position and a neighborhood to the left of it.

  Attention for a given query position p can only see memory positions
  in the range (p - window_size, p].

  Args:
    x: a mtf.Tensor with shape batch_dims + [length, io_channels]
    kv_channels: a mtf.Dimension (the size of the key and value vectors)
    heads: a mtf.Dimension (the number of heads)
    window_size: an integer
    master_dtype: a tf.dtype (deprecated - use params arg)
    slice_dtype: a tf.dtype (deprecated - use params arg)
    length_per_split: an optional integer indicating the part of the length
      dimension per processor.  You can omit if the length dimension is not
      split.
    return_kv: an optional list onto which to append the computed k and v.
    params: an optional quadruple of Tensors (see multihead_attention_params())
    name: an optional string.

  Returns:
    a Tensor with the same shape as x

  Raises:
    ValueError: if channels or depth don't match.
  """
  with tf.variable_scope(
      name, default_name="masked_local_attention_1d", values=[x]):

    batch_dims = x.shape.dims[:-2]
    length, io_channels = x.shape.dims[-2:]
    if params is None:
      wq, wk, wv, wo = multihead_attention_vars(
          x.mesh, heads, io_channels, kv_channels,
          master_dtype, slice_dtype, x.dtype)
    else:
      wq, wk, wv, wo = params

    # Get query q, keys k and values v.
    qkv_shape = mtf.Shape(batch_dims + [heads, length, kv_channels])
    q = mtf.einsum([x, wq], qkv_shape)
    k = mtf.einsum([x, wk], qkv_shape)
    v = mtf.einsum([x, wv], qkv_shape)
    if return_kv is not None:
      return_kv.extend([k, v])

    # Choose a suitable block size.
    # We choose the greatest divisor of length_per_split less than or equal
    # to max(window_size, 128)
    if length_per_split is None:
      length_per_split = length.size
    block_length = max(window_size, 128)
    while length_per_split % block_length != 0:
      block_length -= 1

    query_block_length = mtf.Dimension("query_block_length", block_length)
    memory_block_length = mtf.Dimension("memory_block_length", block_length)
    # The num_blocks dimension gets the same name as the length dimension,
    # so it will be split in the same way.
    num_blocks = mtf.Dimension(length.name, length.size // block_length)
    q_shape = batch_dims + [heads, num_blocks, query_block_length, kv_channels]
    kv_shape = batch_dims + [
        heads, num_blocks, memory_block_length, kv_channels]
    q = mtf.reshape(q, q_shape)
    k = mtf.reshape(k, kv_shape)
    v = mtf.reshape(v, kv_shape)
    # augment the keys and values for each block with keys and values for
    # the previous window_size timesteps.
    k = mtf.left_halo_exchange(k, num_blocks, memory_block_length, window_size)
    v = mtf.left_halo_exchange(v, num_blocks, memory_block_length, window_size)
    padded_memory_block_length = mtf.Dimension(
        "memory_block_length", window_size + block_length)
    mpos = mtf.range(x.mesh, padded_memory_block_length, tf.float32)
    qpos = mtf.range(x.mesh, query_block_length, tf.float32) + window_size
    # prevent looking forward
    mask = mtf.cast(mtf.greater(mpos, qpos), x.dtype) * -1e9
    # prevent looking >=block_length timesteps backward
    mask += mtf.cast(mtf.less_equal(mpos, qpos - block_length), x.dtype) * -1e9
    # Note: The first window_size-1 positions can see back into pre-time
    # where all the keys and values are zero.  We could mask this out, but we
    # don't.
    o = dot_product_attention(q, k, v, mask=mask)
    o = mtf.reshape(o, batch_dims + [heads, length, kv_channels])
    return mtf.einsum([o, wo], mtf.Shape(batch_dims + [length, io_channels]))
예제 #14
0
파일: layers.py 프로젝트: qixiuai/mesh
def multihead_self_attention_memory_compressed(x,
                                               mask_right,
                                               compression_factor,
                                               kv_channels,
                                               heads,
                                               dropout=0.0,
                                               dropout_broadcast_dims=None,
                                               master_dtype=tf.float32,
                                               slice_dtype=tf.float32,
                                               name="multihead_attention"):
  """Memory-compressed self-attention.

  The memory is first average-pooled (strided) to make it shorter by
  a factor of compression_factor.

  Args:
    x: a mtf.Tensor with shape
      [<batch_dims>, query_length, io_channels]
    mask_right: a boolean
    compression_factor: an integer
    kv_channels: a mtf.Dimension (the size of the key and value vectors)
    heads: a mtf.Dimension (the number of heads)
    dropout: a floating point value
    dropout_broadcast_dims: an optional list of mtf.Dimension
    master_dtype: a tf.dtype
    slice_dtype: a tf.dtype
    name: an optional string.

  Returns:
    A mtf.Tensor with shape [batch, query_length, io_channels]

  Raises:
    ValueError: if the dimensions do not match.
  """
  batch_dims = x.shape.dims[:-2]
  length, io_channels = x.shape.dims[-2:]
  with tf.variable_scope(name,
                         default_name="compressed_attention",
                         values=[x]):
    wq, wk, wv, wo = multihead_attention_vars(
        x.mesh, heads, io_channels, kv_channels,
        master_dtype, slice_dtype, x.dtype)
    memory_antecedent = compress_mean(x, length, compression_factor)
    memory_antecedent = rename_length_to_memory_length(memory_antecedent)
    memory_length = memory_antecedent.shape.dims[-2]
    q = mtf.einsum(
        [x, wq],
        mtf.Shape(batch_dims + [heads, length, kv_channels]))
    k = mtf.einsum(
        [memory_antecedent, wk],
        mtf.Shape(batch_dims + [heads, memory_length, kv_channels]))
    v = mtf.einsum(
        [memory_antecedent, wv],
        mtf.Shape(batch_dims + [heads, memory_length, kv_channels]))
    if mask_right:
      query_pos = mtf.range(x.mesh, length, dtype=tf.int32)
      memory_pos = (
          mtf.range(x.mesh, memory_length, dtype=tf.int32) * compression_factor
          + (compression_factor - 1))
      mask = mtf.cast(mtf.greater(memory_pos, query_pos), x.dtype) * -1e9
    else:
      mask = None
    o = dot_product_attention(
        q, k, v, mask, dropout, dropout_broadcast_dims, extra_logit=0.0)
    return mtf.einsum(
        [o, wo], mtf.Shape(batch_dims + [length, io_channels]))