예제 #1
0
                ("Einc", inc_field_scat.e),
                ("Hinc", inc_field_scat.h),
                ("bdry_normals", bdry_normals),
                ("e_bc_residual", eh_bc_values[:3]),
                ("h_bc_residual", eh_bc_values[3]),
            ])

            from pytential.qbx import QBXTargetAssociationFailedException
            try:
                fplot_repr = eval_repr_at(places,
                                          target="plot_targets",
                                          source="qbx_target_tol")
            except QBXTargetAssociationFailedException as e:
                fplot.write_vtk_file("failed-targets.vts", [
                    ("failed_targets",
                     actx.to_numpy(actx.thaw(e.failed_target_flags))),
                ])
                raise

            fplot_repr = EHField(vector_from_device(actx.queue, fplot_repr))
            fplot_inc = EHField(
                vector_from_device(
                    actx.queue, eval_inc_field_at(places,
                                                  target="plot_targets")))

            fplot.write_vtk_file("potential-%s.vts" % resolution, [
                ("E", fplot_repr.e),
                ("H", fplot_repr.h),
                ("Einc", fplot_inc.e),
                ("Hinc", fplot_inc.h),
            ])
예제 #2
0
    def exec_compute_potential_insn_fmm(self, actx: PyOpenCLArrayContext, insn,
                                        bound_expr, evaluate, fmm_driver):
        """
        :arg fmm_driver: A function that accepts four arguments:
            *wrangler*, *strength*, *geo_data*, *kernel*, *kernel_arguments*
        :returns: a tuple ``(assignments, extra_outputs)``, where *assignments*
            is a list of tuples containing pairs ``(name, value)`` representing
            assignments to be performed in the evaluation context.
            *extra_outputs* is data that *fmm_driver* may return
            (such as timing data), passed through unmodified.
        """
        target_name_and_side_to_number, target_discrs_and_qbx_sides = (
            self.get_target_discrs_and_qbx_sides(insn, bound_expr))

        geo_data = self.qbx_fmm_geometry_data(bound_expr.places,
                                              insn.source.geometry,
                                              target_discrs_and_qbx_sides)

        # FIXME Exert more positive control over geo_data attribute lifetimes using
        # geo_data.<method>.clear_cache(geo_data).

        # FIXME Synthesize "bad centers" around corners and edges that have
        # inadequate QBX coverage.

        # FIXME don't compute *all* output kernels on all targets--respect that
        # some target discretizations may only be asking for derivatives (e.g.)

        from pytential import bind, sym
        waa = bind(
            bound_expr.places,
            sym.weights_and_area_elements(self.ambient_dim,
                                          dofdesc=insn.source))(actx)
        densities = [evaluate(density) for density in insn.densities]
        strengths = [waa * density for density in densities]
        flat_strengths = tuple(flatten(strength) for strength in strengths)

        base_kernel = single_valued(knl.get_base_kernel()
                                    for knl in insn.source_kernels)

        output_and_expansion_dtype = (self.get_fmm_output_and_expansion_dtype(
            insn.source_kernels, flat_strengths[0]))
        kernel_extra_kwargs, source_extra_kwargs = (
            self.get_fmm_expansion_wrangler_extra_kwargs(
                actx, insn.target_kernels + insn.source_kernels,
                geo_data.tree().user_source_ids, insn.kernel_arguments,
                evaluate))

        wrangler = self.expansion_wrangler_code_container(
            target_kernels=insn.target_kernels,
            source_kernels=insn.source_kernels).get_wrangler(
                actx.queue,
                geo_data,
                output_and_expansion_dtype,
                self.qbx_order,
                self.fmm_level_to_order,
                source_extra_kwargs=source_extra_kwargs,
                kernel_extra_kwargs=kernel_extra_kwargs,
                _use_target_specific_qbx=self._use_target_specific_qbx)

        from pytential.qbx.geometry import target_state
        if (actx.thaw(geo_data.user_target_to_center()) == target_state.FAILED
            ).any().get():
            raise RuntimeError("geometry has failed targets")

        # {{{ geometry data inspection hook

        if self.geometry_data_inspector is not None:
            perform_fmm = self.geometry_data_inspector(insn, bound_expr,
                                                       geo_data)
            if not perform_fmm:
                return [(o.name, 0) for o in insn.outputs]

        # }}}

        # Execute global QBX.
        all_potentials_on_every_target, extra_outputs = (fmm_driver(
            wrangler, flat_strengths, geo_data, base_kernel,
            kernel_extra_kwargs))

        results = []

        for o in insn.outputs:
            target_side_number = target_name_and_side_to_number[
                o.target_name, o.qbx_forced_limit]
            target_discr, _ = target_discrs_and_qbx_sides[target_side_number]
            target_slice = slice(*geo_data.target_info(
            ).target_discr_starts[target_side_number:target_side_number + 2])

            result = \
                all_potentials_on_every_target[o.target_kernel_index][target_slice]

            from meshmode.discretization import Discretization
            if isinstance(target_discr, Discretization):
                from meshmode.dof_array import unflatten
                result = unflatten(actx, target_discr, result)

            results.append((o.name, result))

        return results, extra_outputs
예제 #3
0
def test_off_surface_eval_vs_direct(ctx_factory,  do_plot=False):
    logging.basicConfig(level=logging.INFO)

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    # prevent cache 'splosion
    from sympy.core.cache import clear_cache
    clear_cache()

    nelements = 300
    target_order = 8
    qbx_order = 3

    mesh = make_curve_mesh(WobblyCircle.random(8, seed=30),
                np.linspace(0, 1, nelements+1),
                target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))
    direct_qbx = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=False,
            target_association_tolerance=0.05,
            )
    fmm_qbx = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order + 3,
            _expansions_in_tree_have_extent=True,
            target_association_tolerance=0.05,
            )

    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=500)
    from pytential.target import PointsTarget
    ptarget = PointsTarget(fplot.points)
    from sumpy.kernel import LaplaceKernel

    places = GeometryCollection({
        "direct_qbx": direct_qbx,
        "fmm_qbx": fmm_qbx,
        "target": ptarget})

    direct_density_discr = places.get_discretization("direct_qbx")
    fmm_density_discr = places.get_discretization("fmm_qbx")

    from pytential.qbx import QBXTargetAssociationFailedException
    op = sym.D(LaplaceKernel(2), sym.var("sigma"), qbx_forced_limit=None)
    try:
        direct_sigma = direct_density_discr.zeros(actx) + 1
        direct_fld_in_vol = bind(places, op,
                auto_where=("direct_qbx", "target"))(
                        actx, sigma=direct_sigma)
    except QBXTargetAssociationFailedException as e:
        fplot.show_scalar_in_matplotlib(
            actx.to_numpy(actx.thaw(e.failed_target_flags)))
        import matplotlib.pyplot as pt
        pt.show()
        raise

    fmm_sigma = fmm_density_discr.zeros(actx) + 1
    fmm_fld_in_vol = bind(places, op,
            auto_where=("fmm_qbx", "target"))(
                    actx, sigma=fmm_sigma)

    err = actx.np.fabs(fmm_fld_in_vol - direct_fld_in_vol)
    linf_err = actx.to_numpy(err).max()
    print("l_inf error:", linf_err)

    if do_plot:
        #fplot.show_scalar_in_mayavi(0.1*.get(queue))
        fplot.write_vtk_file("potential.vts", [
            ("fmm_fld_in_vol", actx.to_numpy(fmm_fld_in_vol)),
            ("direct_fld_in_vol", actx.to_numpy(direct_fld_in_vol))
            ])

    assert linf_err < 1e-3