def main(): use_cuda = args.use_cuda train_data = UnlabeledContact(data=args.data_dir) print('Number of samples: {}'.format(len(train_data))) trainloader = DataLoader(train_data, batch_size=args.batch_size) # Contact matrices are 21x21 input_size = 441 img_height = 21 img_width = 21 vae = AutoEncoder(code_size=20, imgsize=input_size, height=img_height, width=img_width) criterion = nn.BCEWithLogitsLoss() if use_cuda: #vae = nn.DataParallel(vae) vae = vae.cuda() #.half() criterion = criterion.cuda() optimizer = optim.SGD(vae.parameters(), lr=0.01) clock = AverageMeter(name='clock32single', rank=0) epoch_loss = 0 total_loss = 0 end = time.time() for epoch in range(15): for batch_idx, data in enumerate(trainloader): inputs = data['cont_matrix'] inputs = inputs.resize_(args.batch_size, 1, 21, 21) inputs = inputs.float() if use_cuda: inputs = inputs.cuda() #.half() inputs = Variable(inputs) optimizer.zero_grad() output, code = vae(inputs) loss = criterion(output, inputs) loss.backward() optimizer.step() epoch_loss += loss.data[0] clock.update(time.time() - end) end = time.time() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(trainloader.dataset), 100. * batch_idx / len(trainloader), loss.data[0])) clock.save( path= '/home/ygx/libraries/mds/molecules/molecules/conv_autoencoder/runtimes' )
def main(): use_cuda = args.use_cuda train_data = UnlabeledContact(data=args.data_dir) print('Number of samples: {}'.format(len(train_data))) trainloader = DataLoader(train_data, batch_size=args.batch_size) # Contact matrices are 21x21 input_size = 441 encoder = Encoder(input_size=input_size, latent_size=3) decoder = Decoder(latent_size=3, output_size=input_size) vae = VAE(encoder, decoder, use_cuda=use_cuda) criterion = nn.MSELoss() if use_cuda: encoder = nn.DataParallel(encoder) decoder = nn.DataParallel(decoder) encoder = encoder.cuda().half() decoder = decoder.cuda().half() vae = nn.DataParallel(vae) vae = vae.cuda().half() criterion = criterion.cuda().half() optimizer = optim.SGD(vae.parameters(), lr=0.01) clock = AverageMeter(name='clock16', rank=0) epoch_loss = 0 total_loss = 0 end = time.time() for epoch in range(15): for batch_idx, data in enumerate(trainloader): inputs = data['cont_matrix'] # inputs = inputs.resize_(args.batch_size, 1, 21, 21) inputs = inputs.float() if use_cuda: inputs = inputs.cuda().half() inputs = Variable(inputs) optimizer.zero_grad() dec = vae(inputs) ll = latent_loss(vae.z_mean, vae.z_sigma) loss = criterion(dec, inputs) + ll loss.backward() optimizer.step() epoch_loss += loss.data[0] clock.update(time.time() - end) end = time.time() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(trainloader.dataset), 100. * batch_idx / len(trainloader), loss.data[0])) clock.save(path='/home/ygx/libraries/mds/molecules/molecules/linear_vae')
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--resume', type=bool, default=False, help='Resumes training from savefile.') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST( '../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST( '../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) encoder = Encoder2() savefile = './savepoints/checkpoint10.pth.tar' if args.resume: if os.path.isfile(savefile): print("=> loading checkpoint '{}'".format(savefile)) checkpoint = torch.load(savefile) encoder.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}'".format(savefile)) else: print("=> no checkpoint found at '{}'".format(savefile)) model = TransferNet(encoder).to(device) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) train_meter = AverageMeter(name='trainacc') test_meter = AverageMeter(name='testacc') for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader, test_meter) test_meter.save('./')