예제 #1
0
def test_linear_squared():
    fig, ax = plt.subplots(1, 1)
    linear(method1, method2, square=True, ax=ax)
    return fig
예제 #2
0
    18.09,
    19.13,
    19.54,
]
CI = 0.95
x_label = "$M_1$"
y_label = "$M_2$"
# Make subplots
fig, axs = plt.subplots(1, 2, figsize=(10, 5))

# Legacy method
linear(
    method1,
    method2,
    CI=CI,
    ax=axs[0],
    square=True,
    x_label=x_label,
    y_label=y_label,
    title="Linear: Legacy",
)

# Regressor method - preferred approach
Linear(method1, method2, CI=CI).plot(ax=axs[1],
                                     square=True,
                                     x_label=x_label,
                                     y_label=y_label,
                                     title="Linear: Regressor")

plt.show()
예제 #3
0
def test_linear_basic_title():
    fig, ax = plt.subplots(1, 1)
    linear(method1, method2, title='Test', ax=ax)
    return fig
예제 #4
0
def test_linear_with_ci():
    fig, ax = plt.subplots(1, 1)
    linear(method1, method2, line_CI=True, ax=ax)
    return fig
예제 #5
0
def test_linear_basic():
    fig, ax = plt.subplots(1, 1)
    linear(method1, method2, ax=ax)
    return fig
예제 #6
0
from methcomp import linear
import matplotlib.pyplot as plt

method1 = [
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
]
method2 = [
    1.03, 2.05, 2.79, 3.67, 5.00, 5.82, 7.16, 7.69, 8.53, 10.38, 11.11, 12.17,
    13.47, 13.83, 15.15, 16.12, 16.94, 18.09, 19.13, 19.54
]

linear(method1, method2, CI=.95)
plt.show()
예제 #7
0
def test_linear_squared():
    fig, ax = plt.subplots(1, 1)
    with pytest.deprecated_call():
        linear(method1, method2, square=True, ax=ax)
    return fig
예제 #8
0
def test_linear_with_ci():
    fig, ax = plt.subplots(1, 1)
    with pytest.deprecated_call():
        linear(method1, method2, line_CI=True, ax=ax)
    return fig
예제 #9
0
def test_linear_basic_title():
    fig, ax = plt.subplots(1, 1)
    with pytest.deprecated_call():
        linear(method1, method2, title="Test", ax=ax)
    return fig