예제 #1
0
    def build_correspondance(self, visible_markers, camera_calibration,
                             min_marker_perimeter, min_id_confidence):
        """
        - use all visible markers
        - fit a convex quadrangle around it
        - use quadrangle verts to establish perpective transform
        - map all markers into surface space
        - build up list of found markers and their uv coords
        """

        all_verts = [
            m['verts'] for m in visible_markers
            if m['perimeter'] >= min_marker_perimeter
        ]
        if not all_verts:
            return
        all_verts = np.array(all_verts, dtype=np.float32)
        all_verts.shape = (
            -1, 1, 2)  # [vert,vert,vert,vert,vert...] with vert = [[r,c]]
        # all_verts_undistorted_normalized centered in img center flipped in y and range [-1,1]
        all_verts_undistorted_normalized = cv2.undistortPoints(
            all_verts, np.asarray(camera_calibration['camera_matrix']),
            np.asarray(camera_calibration['dist_coefs']) * self.use_distortion)
        hull = cv2.convexHull(all_verts_undistorted_normalized,
                              clockwise=False)

        #simplify until we have excatly 4 verts
        if hull.shape[0] > 4:
            new_hull = cv2.approxPolyDP(hull, epsilon=1, closed=True)
            if new_hull.shape[0] >= 4:
                hull = new_hull
        if hull.shape[0] > 4:
            curvature = abs(GetAnglesPolyline(hull, closed=True))
            most_acute_4_threshold = sorted(curvature)[3]
            hull = hull[curvature <= most_acute_4_threshold]

        # all_verts_undistorted_normalized space is flipped in y.
        # we need to change the order of the hull vertecies
        hull = hull[[1, 0, 3, 2], :, :]

        # now we need to roll the hull verts until we have the right orientation:
        # all_verts_undistorted_normalized space has its origin at the image center.
        # adding 1 to the coordinates puts the origin at the top left.
        distance_to_top_left = np.sqrt((hull[:, :, 0] + 1)**2 +
                                       (hull[:, :, 1] + 1)**2)
        bot_left_idx = np.argmin(distance_to_top_left) + 1
        hull = np.roll(hull, -bot_left_idx, axis=0)

        #based on these 4 verts we calculate the transformations into a 0,0 1,1 square space
        m_from_undistored_norm_space = m_verts_from_screen(hull)
        self.detected = True
        # map the markers vertices into the surface space (one can think of these as texture coordinates u,v)
        marker_uv_coords = cv2.perspectiveTransform(
            all_verts_undistorted_normalized, m_from_undistored_norm_space)
        marker_uv_coords.shape = (
            -1, 4, 1, 2)  #[marker,marker...] marker = [ [[r,c]],[[r,c]] ]

        # build up a dict of discovered markers. Each with a history of uv coordinates
        for m, uv in zip(visible_markers, marker_uv_coords):
            try:
                self.markers[m['id']].add_uv_coords(uv)
            except KeyError:
                self.markers[m['id']] = Support_Marker(m['id'])
                self.markers[m['id']].add_uv_coords(uv)

        #average collection of uv correspondences accros detected markers
        self.build_up_status = sum(
            [len(m.collected_uv_coords)
             for m in self.markers.values()]) / float(len(self.markers))

        if self.build_up_status >= self.required_build_up:
            self.finalize_correnspondance()
예제 #2
0
    def build_correspondance(self, visible_markers):
        """
        - use all visible markers
        - fit a convex quadrangle around it
        - use quadrangle verts to establish perpective transform
        - map all markers into surface space
        - build up list of found markers and their uv coords
        """
        if visible_markers == []:
            self.m_to_screen = None
            self.m_from_screen = None
            self.detected = False

            return

        all_verts = np.array([[m['verts_norm'] for m in visible_markers]])
        all_verts.shape = (
            -1, 1, 2)  # [vert,vert,vert,vert,vert...] with vert = [[r,c]]
        hull = cv2.convexHull(all_verts, clockwise=False)

        #simplify until we have excatly 4 verts
        if hull.shape[0] > 4:
            new_hull = cv2.approxPolyDP(hull, epsilon=1, closed=True)
            if new_hull.shape[0] >= 4:
                hull = new_hull
        if hull.shape[0] > 4:
            curvature = abs(GetAnglesPolyline(hull, closed=True))
            most_acute_4_threshold = sorted(curvature)[3]
            hull = hull[curvature <= most_acute_4_threshold]

        #now we need to roll the hull verts until we have the right orientation:
        distance_to_origin = np.sqrt(hull[:, :, 0]**2 + hull[:, :, 1]**2)
        top_left_idx = np.argmin(distance_to_origin)
        hull = np.roll(hull, -top_left_idx, axis=0)

        #based on these 4 verts we calculate the transformations into a 0,0 1,1 square space
        self.m_to_screen = m_verts_to_screen(hull)
        self.m_from_screen = m_verts_from_screen(hull)
        self.detected = True
        # map the markers vertices in to the surface space (one can think of these as texture coordinates u,v)
        marker_uv_coords = cv2.perspectiveTransform(all_verts,
                                                    self.m_from_screen)
        marker_uv_coords.shape = (
            -1, 4, 1, 2)  #[marker,marker...] marker = [ [[r,c]],[[r,c]] ]

        # build up a dict of discovered markers. Each with a history of uv coordinates
        for m, uv in zip(visible_markers, marker_uv_coords):
            try:
                self.markers[m['id']].add_uv_coords(uv)
            except KeyError:
                self.markers[m['id']] = Support_Marker(m['id'])
                self.markers[m['id']].add_uv_coords(uv)

        #average collection of uv correspondences accros detected markers
        self.build_up_status = sum(
            [len(m.collected_uv_coords)
             for m in self.markers.values()]) / float(len(self.markers))

        if self.build_up_status >= self.required_build_up:
            self.finalize_correnspondance()
            self.defined = True