test_transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.CenterCrop(224), transforms.ToTensor(), normalize ]) dataset_train = opts.dataset(opts.data, train=True, transform=train_transform, download=True) dataset_train_eval = opts.dataset(opts.data, train=True, transform=test_transform, download=True) dataset_eval = opts.dataset(opts.data, train=False, transform=test_transform, download=True) print("Number of images in Training Set: %d" % len(dataset_train)) print("Number of images in Test set: %d" % len(dataset_eval)) loader_train_sample = DataLoader(dataset_train, batch_sampler=NPairs(dataset_train, opts.batch, m=opts.num_image_per_class, iter_per_epoch=opts.iter_per_epoch), pin_memory=True, num_workers=opts.num_workers) loader_train_eval = DataLoader(dataset_train_eval, shuffle=False, batch_size=opts.batch, drop_last=False, pin_memory=False, num_workers=opts.num_workers) loader_eval = DataLoader(dataset_eval, shuffle=False, batch_size=opts.batch, drop_last=False, pin_memory=True, num_workers=opts.num_workers) model = LinearEmbedding(base_model, output_size=base_model.output_size, embedding_size=opts.embedding_size, normalize=not opts.no_normalize).cuda() if opts.load is not None: model.load_state_dict(torch.load(opts.load))
dataset_train_eval = opts.dataset(opts.data, train=True, transform=test_transform, download=True) dataset_eval = opts.dataset(opts.data, train=False, transform=test_transform, download=True) print(len(dataset_train)) print(len(dataset_eval)) loader_train_sample = DataLoader(dataset_train, batch_sampler=NPairs( dataset_train, opts.batch, m=5, iter_per_epoch=opts.iter_per_epoch), pin_memory=True, num_workers=opts.num_workers) loader_train = DataLoader(dataset_train_eval, shuffle=False, batch_size=opts.batch, drop_last=False, pin_memory=False, num_workers=opts.num_workers) loader_eval_sample = DataLoader(dataset_eval, batch_sampler=NPairs( dataset_train, opts.batch,
]) dataset_train = opts.dataset(opts.data, train=True, transform=train_transform, download=True) dataset_eval = opts.dataset(opts.data, train=False, transform=test_transform, download=True) print(len(dataset_train)) print(len(dataset_eval)) loader_train = DataLoader(dataset_train, batch_sampler=NPairs(dataset_train, opts.batch, m=5), num_workers=1, pin_memory=True) loader_eval = DataLoader(dataset_eval, shuffle=False, batch_size=opts.batch, drop_last=False, num_workers=1, pin_memory=True) if opts.no_embedding: model = NoEmbedding(base_model, normalize=not opts.no_normalize).cuda() else: model = LinearEmbedding(base_model, output_size=base_model.output_size, embedding_size=opts.embedding_size,