def __init__(self, n_inputs, n_hidden_neurons=[8, 8], n_outputs=1, session=tf.Session()): self.__session = session self.__id = strftime("%Y%m%d%H%M%S", gmtime()) + '-ddn-porto-seguro' self.__input = tf.placeholder(tf.float32, [None, n_inputs], name='input') self.__output = tf.placeholder(tf.float32, [None, n_outputs], name='expected_output') self.__keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.__input_layers = [] self.__hidden_weights = [] self.__hidden_biases = [] self.__hidden_layers = [] self.__output_weights = [] self.__output_biases = [] self.__output_layers = [] self.__losses = [] self.__optimizers = [] self.__gini = metric.Gini() self.__build(n_inputs, n_hidden_neurons, n_outputs)
def __init__(self, n_inputs, hidden_neurons, n_outputs=1, activation_function=tf.nn.relu, session=tf.Session()): self.__id = strftime("%Y%m%d%H%M%S", gmtime()) + '-mlp-porto-seguro' self.__session = session self.__input = tf.placeholder(tf.float32, [None, None], name='input') self.__output = tf.placeholder(tf.float32, [None, n_outputs], 'output') self.__keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.__weights = [] self.__biases = [] self.__model = None self.__gini = metric.Gini() self.__build(n_inputs, hidden_neurons, n_outputs, activation_function)
# # Processing input # print('Normalizing...') normalization = norm.MinMax() train_x = normalization.fit_and_normalize(train_x) test_x = normalization.normalize(test_x) # # Building the model # print("Training...") svm = svm.SVC() svm.fit(train_x, train_y[:,0]) # # Testing model # print("Predicting...") test_y_hat = svm.predict(test_x) if not is_local_train: print("Exporting...") result = test_y_hat df = pd.DataFrame({'id': test_id, 'target': result}) df.to_csv('output/prediction/' + strftime("%Y%m%d%H%M%S", gmtime()) + '-svm-porto-seguro.csv', index=False, sep=',') else: gini = metric.Gini() print(gini.calculate(test_y.T, np.array([test_y_hat])))