예제 #1
0
class BasicInstructor:
    def __init__(self, opt):
        self.log = create_logger(__name__, silent=False, to_disk=True,
                                 log_file=cfg.log_filename if cfg.if_test
                                 else [cfg.log_filename, cfg.save_root + 'log.txt'])
        self.sig = Signal(cfg.signal_file)
        self.opt = opt

        # oracle, generator, discriminator
        self.oracle = Oracle(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
                             cfg.padding_idx, gpu=cfg.CUDA)
        self.oracle_list = [Oracle(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
                                   cfg.padding_idx, gpu=cfg.CUDA) for _ in range(cfg.k_label)]

        self.dis = None
        self.clas = None

        self.show_config()
        self.check_oracle()  # Create Oracle models if not exist
        # DataLoader
        self.oracle_samples = torch.load(cfg.oracle_samples_path.format(cfg.samples_num))
        self.oracle_samples_list = [torch.load(cfg.multi_oracle_samples_path.format(i, cfg.samples_num))
                                    for i in range(cfg.k_label)]

        self.oracle_data = GenDataIter(self.oracle_samples)
        self.oracle_data_list = [GenDataIter(self.oracle_samples_list[i]) for i in range(cfg.k_label)]

        # Criterion
        self.mle_criterion = nn.NLLLoss()
        self.dis_criterion = nn.CrossEntropyLoss()

        # Metrics
        self.nll_oracle = NLL('NLL_oracle', if_use=cfg.use_nll_oracle, gpu=cfg.CUDA)
        self.nll_gen = NLL('NLL_gen', if_use=cfg.use_nll_gen, gpu=cfg.CUDA)
        self.nll_div = NLL('NLL_div', if_use=cfg.use_nll_div, gpu=cfg.CUDA)
        self.all_metrics = [self.nll_oracle, self.nll_gen, self.nll_div]

    def _run(self):
        print('Nothing to run in Basic Instructor!')
        pass

    def _test(self):
        pass

    def init_model(self):
        if cfg.oracle_pretrain:
            if not os.path.exists(cfg.oracle_state_dict_path):
                create_oracle()
            self.oracle.load_state_dict(torch.load(cfg.oracle_state_dict_path))

        if cfg.dis_pretrain:
            self.log.info(
                'Load pretrained discriminator: {}'.format(cfg.pretrained_dis_path))
            self.dis.load_state_dict(torch.load(cfg.pretrained_dis_path))
        if cfg.gen_pretrain:
            self.log.info('Load MLE pretrained generator gen: {}'.format(cfg.pretrained_gen_path))
            self.gen.load_state_dict(torch.load(cfg.pretrained_gen_path, map_location='cuda:{}'.format(cfg.device)))

        if cfg.CUDA:
            self.oracle = self.oracle.cuda()
            self.gen = self.gen.cuda()
            self.dis = self.dis.cuda()

    def train_gen_epoch(self, model, data_loader, criterion, optimizer):
        total_loss = 0
        for i, data in enumerate(data_loader):
            inp, target = data['input'], data['target']
            '''
            print("inp.shape = ",inp.shape) -> [64,20]
            if (inp.numpy()[0][1:] == target.numpy()[0][:-1]).all: 
                print("yes")    没错
            exit()
            '''
            if cfg.CUDA:
                inp, target = inp.cuda(), target.cuda()

            hidden = model.init_hidden(data_loader.batch_size) 
            pred = model.forward(inp, hidden) #seqGAN:(batch_size * seq_len) * vocab_size 
            loss = criterion(pred, target.view(-1)) #seqGAN:self.mle_criterion = nn.NLLLoss()
            self.optimize(optimizer, loss, model)
            total_loss += loss.item()
        return total_loss / len(data_loader)

    def train_dis_epoch(self, model, data_loader, criterion, optimizer):
        total_loss = 0
        total_acc = 0
        total_num = 0
        for i, data in enumerate(data_loader):
            inp, target = data['input'], data['target']
            if cfg.CUDA:
                inp, target = inp.cuda(), target.cuda()

            pred = model.forward(inp)
            loss = criterion(pred, target)
            self.optimize(optimizer, loss, model)

            total_loss += loss.item()
            total_acc += torch.sum((pred.argmax(dim=-1) == target)).item()
            total_num += inp.size(0)

        total_loss /= len(data_loader)
        total_acc /= total_num
        return total_loss, total_acc

    @staticmethod
    def eval_dis(model, data_loader, criterion):
        total_loss = 0
        total_acc = 0
        total_num = 0
        with torch.no_grad():
            for i, data in enumerate(data_loader):
                inp, target = data['input'], data['target']
                if cfg.CUDA:
                    inp, target = inp.cuda(), target.cuda()

                pred = model.forward(inp)
                loss = criterion(pred, target)
                total_loss += loss.item()
                total_acc += torch.sum((pred.argmax(dim=-1) == target)).item()
                total_num += inp.size(0)
            total_loss /= len(data_loader)
            total_acc /= total_num
        return total_loss, total_acc

    @staticmethod
    def optimize_multi(opts, losses):
        for i, (opt, loss) in enumerate(zip(opts, losses)):
            opt.zero_grad()
            loss.backward(retain_graph=True if i < len(opts) - 1 else False)
            opt.step()

    @staticmethod
    def optimize(opt, loss, model=None, retain_graph=False):
        opt.zero_grad()
        loss.backward(retain_graph=retain_graph)
        if model is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.clip_norm)
        opt.step()

    def show_config(self):
        """Show parser parameters settings"""
        self.log.info(100 * '=')
        self.log.info('> training arguments:')
        for arg in vars(self.opt):
            self.log.info('>>> {0}: {1}'.format(arg, getattr(self.opt, arg)))
        self.log.info(100 * '=')

    def cal_metrics(self, fmt_str=False):
        """
        Calculate metrics
        :param fmt_str: if return format string for logging
        """
        with torch.no_grad():
            # Prepare data for evaluation
            gen_data = GenDataIter(self.gen.sample(cfg.samples_num, 4 * cfg.batch_size))

            # Reset metrics
            self.nll_oracle.reset(self.oracle, gen_data.loader)
            self.nll_gen.reset(self.gen, self.oracle_data.loader)
            self.nll_div.reset(self.gen, gen_data.loader)

        if fmt_str:
            return ', '.join(['%s = %s' % (metric.get_name(), metric.get_score()) for metric in self.all_metrics])
        else:
            return [metric.get_score() for metric in self.all_metrics]

    def cal_metrics_with_label(self, label_i):
        assert type(label_i) == int, 'missing label'
        with torch.no_grad():
            # Prepare data for evaluation
            eval_samples = self.gen.sample(cfg.samples_num, 8 * cfg.batch_size, label_i=label_i)
            gen_data = GenDataIter(eval_samples)

            # Reset metrics
            self.nll_oracle.reset(self.oracle_list[label_i], gen_data.loader, label_i)
            self.nll_gen.reset(self.gen, self.oracle_data_list[label_i].loader, label_i)
            self.nll_div.reset(self.gen, gen_data.loader, label_i)

        return [metric.get_score() for metric in self.all_metrics]

    def comb_metrics(self, fmt_str=False):
        all_scores = [self.cal_metrics_with_label(label_i) for label_i in range(cfg.k_label)]
        all_scores = np.array(all_scores).T.tolist()  # each row for each metric

        if fmt_str:
            return ', '.join(['%s = %s' % (metric.get_name(), score)
                              for (metric, score) in zip(self.all_metrics, all_scores)])
        return all_scores

    def _save(self, phase, epoch):
        """Save model state dict and generator's samples"""
        if phase != 'ADV':
            torch.save(self.gen.state_dict(), cfg.save_model_root + 'gen_{}_{:05d}.pt'.format(phase, epoch))
        save_sample_path = cfg.save_samples_root + 'samples_{}_{:05d}.txt'.format(phase, epoch)
        samples = self.gen.sample(cfg.batch_size, cfg.batch_size)
        write_tensor(save_sample_path, samples)

    def update_temperature(self, i, N):
        self.gen.temperature.data = torch.Tensor([get_fixed_temperature(cfg.temperature, i, N, cfg.temp_adpt)])
        if cfg.CUDA:
            self.gen.temperature.data = self.gen.temperature.data.cuda()

    def check_oracle(self):
        if not cfg.oracle_pretrain:
            create_oracle()
            create_multi_oracle(cfg.k_label)

        # General text generation Oracle model
        if not os.path.exists(cfg.oracle_samples_path.format(cfg.samples_num)) or not cfg.oracle_pretrain:
            create_oracle()

        # Category text generation Oracle models
        for i in range(cfg.k_label):
            if not os.path.exists(cfg.multi_oracle_samples_path.format(i, cfg.samples_num)):
                create_multi_oracle(cfg.k_label)
                break

        # Load Oracle state dict
        self.oracle.load_state_dict(torch.load(cfg.oracle_state_dict_path))
        for i in range(cfg.k_label):
            oracle_path = cfg.multi_oracle_state_dict_path.format(i)
            self.oracle_list[i].load_state_dict(torch.load(oracle_path))
예제 #2
0
class BasicInstructor:
    def __init__(self, opt):
        self.log = create_logger(__name__,
                                 silent=False,
                                 to_disk=True,
                                 log_file=cfg.log_filename if cfg.if_test else
                                 [cfg.log_filename, cfg.save_root + 'log.txt'])
        self.sig = Signal(cfg.signal_file)
        self.opt = opt
        self.show_config()

        self.clas = None

        # load dictionary
        self.word2idx_dict, self.idx2word_dict = load_dict(cfg.dataset)

        # Dataloader
        try:
            self.train_data = GenDataIter(cfg.train_data)
            self.test_data = GenDataIter(cfg.test_data, if_test_data=True)
        except:
            pass

        try:
            self.train_data_list = [
                GenDataIter(cfg.cat_train_data.format(i))
                for i in range(cfg.k_label)
            ]
            self.test_data_list = [
                GenDataIter(cfg.cat_test_data.format(i), if_test_data=True)
                for i in range(cfg.k_label)
            ]
            self.clas_data_list = [
                GenDataIter(cfg.cat_test_data.format(str(i)),
                            if_test_data=True) for i in range(cfg.k_label)
            ]

            self.train_samples_list = [
                self.train_data_list[i].target for i in range(cfg.k_label)
            ]
            self.clas_samples_list = [
                self.clas_data_list[i].target for i in range(cfg.k_label)
            ]
        except:
            pass

        # Criterion
        self.mle_criterion = nn.NLLLoss()
        self.dis_criterion = nn.CrossEntropyLoss()
        self.clas_criterion = nn.CrossEntropyLoss()

        # Optimizer
        self.clas_opt = None

        # Metrics
        self.bleu = BLEU('BLEU', gram=[2, 3, 4, 5], if_use=cfg.use_bleu)
        self.nll_gen = NLL('NLL_gen', if_use=cfg.use_nll_gen, gpu=cfg.CUDA)
        self.nll_div = NLL('NLL_div', if_use=cfg.use_nll_div, gpu=cfg.CUDA)
        self.self_bleu = BLEU('Self-BLEU',
                              gram=[2, 3, 4],
                              if_use=cfg.use_self_bleu)
        self.clas_acc = ACC(if_use=cfg.use_clas_acc)
        self.ppl = PPL(self.train_data,
                       self.test_data,
                       n_gram=5,
                       if_use=cfg.use_ppl)
        self.all_metrics = [
            self.bleu, self.nll_gen, self.nll_div, self.self_bleu, self.ppl
        ]

    def _run(self):
        print('Nothing to run in Basic Instructor!')
        pass

    def _test(self):
        pass

    def init_model(self):
        if cfg.dis_pretrain:
            self.log.info('Load pre-trained discriminator: {}'.format(
                cfg.pretrained_dis_path))
            self.dis.load_state_dict(torch.load(cfg.pretrained_dis_path))
        if cfg.gen_pretrain:
            self.log.info('Load MLE pre-trained generator: {}'.format(
                cfg.pretrained_gen_path))
            self.gen.load_state_dict(torch.load(cfg.pretrained_gen_path))

        if cfg.CUDA:
            self.gen = self.gen.cuda()
            self.dis = self.dis.cuda()

    def train_gen_epoch(self, model, data_loader, criterion, optimizer):
        total_loss = 0
        for i, data in enumerate(data_loader):
            inp, target = data['input'], data['target']
            if cfg.CUDA:
                inp, target = inp.cuda(), target.cuda()

            hidden = model.init_hidden(data_loader.batch_size)
            pred = model.forward(inp, hidden)
            loss = criterion(pred, target.view(-1))
            self.optimize(optimizer, loss, model)
            total_loss += loss.item()
        return total_loss / len(data_loader)

    def train_dis_epoch(self, model, data_loader, criterion, optimizer):
        total_loss = 0
        total_acc = 0
        total_num = 0
        for i, data in enumerate(data_loader):
            inp, target = data['input'], data['target']
            if cfg.CUDA:
                inp, target = inp.cuda(), target.cuda()

            pred = model.forward(inp)
            loss = criterion(pred, target)
            self.optimize(optimizer, loss, model)

            total_loss += loss.item()
            total_acc += torch.sum((pred.argmax(dim=-1) == target)).item()
            total_num += inp.size(0)

        total_loss /= len(data_loader)
        total_acc /= total_num
        return total_loss, total_acc

    def train_classifier(self, epochs):
        """
        Classifier for calculating the classification accuracy metric of category text generation.

        Note: the train and test data for the classifier is opposite to the generator.
        Because the classifier is to calculate the classification accuracy of the generated samples
        where are trained on self.train_samples_list.

        Since there's no test data in synthetic data (oracle data), the synthetic data experiments
        doesn't need a classifier.
        """
        import copy

        # Prepare data for Classifier
        clas_data = CatClasDataIter(self.clas_samples_list)
        eval_clas_data = CatClasDataIter(self.train_samples_list)

        max_acc = 0
        best_clas = None
        for epoch in range(epochs):
            c_loss, c_acc = self.train_dis_epoch(self.clas, clas_data.loader,
                                                 self.clas_criterion,
                                                 self.clas_opt)
            _, eval_acc = self.eval_dis(self.clas, eval_clas_data.loader,
                                        self.clas_criterion)
            if eval_acc > max_acc:
                best_clas = copy.deepcopy(
                    self.clas.state_dict())  # save the best classifier
                max_acc = eval_acc
            self.log.info(
                '[PRE-CLAS] epoch %d: c_loss = %.4f, c_acc = %.4f, eval_acc = %.4f, max_eval_acc = %.4f',
                epoch, c_loss, c_acc, eval_acc, max_acc)
        self.clas.load_state_dict(
            copy.deepcopy(best_clas))  # Reload the best classifier

    @staticmethod
    def eval_dis(model, data_loader, criterion):
        total_loss = 0
        total_acc = 0
        total_num = 0
        with torch.no_grad():
            for i, data in enumerate(data_loader):
                inp, target = data['input'], data['target']
                if cfg.CUDA:
                    inp, target = inp.cuda(), target.cuda()

                pred = model.forward(inp)
                loss = criterion(pred, target)
                total_loss += loss.item()
                total_acc += torch.sum((pred.argmax(dim=-1) == target)).item()
                total_num += inp.size(0)
            total_loss /= len(data_loader)
            total_acc /= total_num
        return total_loss, total_acc

    @staticmethod
    def optimize_multi(opts, losses):
        for i, (opt, loss) in enumerate(zip(opts, losses)):
            opt.zero_grad()
            loss.backward(retain_graph=True if i < len(opts) - 1 else False)
            opt.step()

    @staticmethod
    def optimize(opt, loss, model=None, retain_graph=False):
        opt.zero_grad()
        loss.backward(retain_graph=retain_graph)
        if model is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.clip_norm)
        opt.step()

    def show_config(self):
        self.log.info(100 * '=')
        self.log.info('> training arguments:')
        for arg in vars(self.opt):
            self.log.info('>>> {0}: {1}'.format(arg, getattr(self.opt, arg)))
        self.log.info(100 * '=')

    def cal_metrics(self, fmt_str=False):
        """
        Calculate metrics
        :param fmt_str: if return format string for logging
        """
        with torch.no_grad():
            # Prepare data for evaluation
            eval_samples = self.gen.sample(cfg.samples_num, 4 * cfg.batch_size)
            gen_data = GenDataIter(eval_samples)
            gen_tokens = tensor_to_tokens(eval_samples, self.idx2word_dict)
            gen_tokens_s = tensor_to_tokens(self.gen.sample(200, 200),
                                            self.idx2word_dict)

            # Reset metrics
            self.bleu.reset(test_text=gen_tokens,
                            real_text=self.test_data.tokens)
            self.nll_gen.reset(self.gen, self.train_data.loader)
            self.nll_div.reset(self.gen, gen_data.loader)
            self.self_bleu.reset(test_text=gen_tokens_s, real_text=gen_tokens)
            self.ppl.reset(gen_tokens)

        if fmt_str:
            return ', '.join([
                '%s = %s' % (metric.get_name(), metric.get_score())
                for metric in self.all_metrics
            ])
        else:
            return [metric.get_score() for metric in self.all_metrics]

    def cal_metrics_with_label(self, label_i):
        assert type(label_i) == int, 'missing label'

        with torch.no_grad():
            # Prepare data for evaluation
            eval_samples = self.gen.sample(cfg.samples_num,
                                           8 * cfg.batch_size,
                                           label_i=label_i)
            gen_data = GenDataIter(eval_samples)
            gen_tokens = tensor_to_tokens(eval_samples, self.idx2word_dict)
            gen_tokens_s = tensor_to_tokens(
                self.gen.sample(200, 200, label_i=label_i), self.idx2word_dict)
            clas_data = CatClasDataIter([eval_samples], label_i)

            # Reset metrics
            self.bleu.reset(test_text=gen_tokens,
                            real_text=self.test_data_list[label_i].tokens)
            self.nll_gen.reset(self.gen, self.train_data_list[label_i].loader,
                               label_i)
            self.nll_div.reset(self.gen, gen_data.loader, label_i)
            self.self_bleu.reset(test_text=gen_tokens_s, real_text=gen_tokens)
            self.clas_acc.reset(self.clas, clas_data.loader)
            self.ppl.reset(gen_tokens)

        return [metric.get_score() for metric in self.all_metrics]

    def comb_metrics(self, fmt_str=False):
        all_scores = [
            self.cal_metrics_with_label(label_i)
            for label_i in range(cfg.k_label)
        ]
        all_scores = np.array(
            all_scores).T.tolist()  # each row for each metric

        if fmt_str:
            return ', '.join([
                '%s = %s' % (metric.get_name(), score)
                for (metric, score) in zip(self.all_metrics, all_scores)
            ])
        return all_scores

    def _save(self, phase, epoch):
        """Save model state dict and generator's samples"""
        if phase != 'ADV':
            torch.save(
                self.gen.state_dict(),
                cfg.save_model_root + 'gen_{}_{:05d}.pt'.format(phase, epoch))
        save_sample_path = cfg.save_samples_root + 'samples_{}_{}_{:05d}.txt'.format(
            phase, cfg.samples_num, epoch)
        samples = self.gen.sample(5000, cfg.batch_size)
        write_tokens(save_sample_path,
                     tensor_to_tokens(samples, self.idx2word_dict))

    def update_temperature(self, i, N):
        self.gen.temperature.data = torch.Tensor(
            [get_fixed_temperature(cfg.temperature, i, N, cfg.temp_adpt)])
        if cfg.CUDA:
            self.gen.temperature.data = self.gen.temperature.data.cuda()