if dataset == "50Salads": features = "SpatialCNN_" + granularity import sys noise_level = int(sys.argv[1]) print(noise_level) # ------------------------------------------------------------------ # Evaluate using different filter lengths if 1: # for conv in [5, 10, 15, 20]: # Initialize dataset loader & metrics data = datasets.Dataset(dataset, base_dir) trial_metrics = metrics.ComputeMetrics(overlap=.1, bg_class=bg_class) trial_metrics_30 = metrics.ComputeMetrics(overlap=.3, bg_class=bg_class) trial_metrics_50 = metrics.ComputeMetrics(overlap=.5, bg_class=bg_class) # Load data for each split for split in data.splits: if sensor_type == "video": feature_type = "A" if model_type != "SVM" else "X" else: feature_type = "S" X_train, y_train, X_test, y_test = data.load_split( features, split=split, sample_rate=video_rate, feature_type=feature_type)
conv = {'50Salads':25, "JIGSAWS":20, "MERL":5, "GTEA":25}[dataset] # Which features for the given dataset features = "SpatialCNN" bg_class = 0 if dataset is not "JIGSAWS" else None if dataset == "50Salads": features = "SpatialCNN_" + granularity # ------------------------------------------------------------------ # Evaluate using different filter lengths if 1: # for conv in [5, 10, 15, 20]: # Initialize dataset loader & metrics data = datasets.Dataset(dataset, base_dir) trial_metrics = metrics.ComputeMetrics(overlap=.1, bg_class=bg_class) # Load data for each split for split in data.splits: if sensor_type=="video": feature_type = "A" if model_type != "SVM" else "X" else: feature_type = "S" X_train, y_train, X_test, y_test = data.load_split(features, split=split, sample_rate=video_rate, feature_type=feature_type) if trial_metrics.n_classes is None: trial_metrics.set_classes(data.n_classes)
# conv = {'50Salads':50, "JIGSAWS":20, "MERL":5, "GTEA":25}[dataset] # Which features for the given dataset features = "SpatialCNN" bg_class = 0 if dataset is not "JIGSAWS" else None if dataset == "50Salads": features = "SpatialCNN_" + granularity # ------------------------------------------------------------------ # Evaluate using different filter lengths if 1: # for conv in [5, 10, 15, 20]: # Initialize dataset loader & metrics data = datasets.Dataset(dataset, base_dir) trial_metrics = metrics.ComputeMetrics(overlap=.1, bg_class=bg_class) trial_metrics_train = metrics.ComputeMetrics(overlap=.1, bg_class=bg_class, task='train') # Load data for each split for split in data.splits: if sensor_type == "video": feature_type = "A" if model_type != "SVM" else "X" else: feature_type = "S" ## stops training after the first split if split != 'Split_1': print('terminate') sys.exit()