def get_metrics(inputs, outputs, params): """Aggregate the metrics for rotator model. Args: inputs: Input dictionary of the rotator model. outputs: Output dictionary returned by the rotator model. params: Hyperparameters of the rotator model. Returns: names_to_values: metrics->values (dict). names_to_updates: metrics->ops (dict). """ names_to_values = dict() names_to_updates = dict() tmp_values, tmp_updates = metrics.add_image_pred_metrics( inputs, outputs, params.num_views, 3 * params.image_size**2) names_to_values.update(tmp_values) names_to_updates.update(tmp_updates) tmp_values, tmp_updates = metrics.add_mask_pred_metrics( inputs, outputs, params.num_views, params.image_size**2) names_to_values.update(tmp_values) names_to_updates.update(tmp_updates) for name, value in names_to_values.items(): slim.summaries.add_scalar_summary(value, name, prefix='eval', print_summary=True) return names_to_values, names_to_updates
def get_metrics(inputs, outputs, params): """Aggregate the metrics for rotator model. Args: inputs: Input dictionary of the rotator model. outputs: Output dictionary returned by the rotator model. params: Hyperparameters of the rotator model. Returns: names_to_values: metrics->values (dict). names_to_updates: metrics->ops (dict). """ names_to_values = dict() names_to_updates = dict() tmp_values, tmp_updates = metrics.add_image_pred_metrics( inputs, outputs, params.num_views, 3*params.image_size**2) names_to_values.update(tmp_values) names_to_updates.update(tmp_updates) tmp_values, tmp_updates = metrics.add_mask_pred_metrics( inputs, outputs, params.num_views, params.image_size**2) names_to_values.update(tmp_values) names_to_updates.update(tmp_updates) for name, value in names_to_values.iteritems(): slim.summaries.add_scalar_summary( value, name, prefix='eval', print_summary=True) return names_to_values, names_to_updates