예제 #1
0
def plot_confusion_matrix(cm, labels_name, title):
    cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]  # 归一化
    plt.imshow(cm, interpolation='nearest', cmap="summer")  # 在特定的窗口上显示图像
    plt.title(title)  # 图像标题
    plt.colorbar()
    num_local = np.array(range(len(labels_name)))
    plt.xticks(num_local, labels_name)  # 将标签印在x轴坐标上
    plt.yticks(num_local, labels_name, rotation=90)  # 将标签印在y轴坐标上
    plt.ylabel('True label')
    plt.xlabel('Predicted label')


predicted = np.argmax(resultall, 1)
confu_matrix = cal_confu_matrix(np.array(predicted),
                                np.array(lableforconfusion),
                                class_num=2)
print(confu_matrix)

labels_name = ["inactive CNV", "active CNV"]
plot_confusion_matrix(confu_matrix, labels_name, "Confusion Matrix")
plt.savefig('./savedimg/confusionmatrix_octa.png',
            dpi=300,
            bbox_inches='tight')
plt.show()
metrics(confu_matrix, save_path="./savedimg/")

for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
        label='Doctor3',
        tick_label=name_list,
        fc='plum')

plt.legend(loc="upper left", bbox_to_anchor=(0.0, 1.1), ncol=4)
plt.savefig('./savedimg/OCT/CNN_Doctor_precission_comparision_EACH.png',
            dpi=300)
plt.show()

#draw recall bar pic each
from metrics import calc_metrics, cal_confu_matrix, metrics
import numpy as np

aaaaaa = np.array(data['A'])
confu_matrix = cal_confu_matrix(np.array(data['A']),
                                np.array(data['D']),
                                class_num=4)
print(confu_matrix)
metrics(confu_matrix, save_path="./savedimg/OCT/doctor1")

confu_matrix = cal_confu_matrix(np.array(data['B']),
                                np.array(data['D']),
                                class_num=4)
print(confu_matrix)
metrics(confu_matrix, save_path="./savedimg/OCT/doctor2")

confu_matrix = cal_confu_matrix(np.array(data['C']),
                                np.array(data['D']),
                                class_num=4)
print(confu_matrix)
metrics(confu_matrix, save_path="./savedimg/OCT/doctor3")