def validation(valid_loader, model, criterion, num_classes, batch_size, classifier, batch_metrics=None): """Args: valid_loader: validation data loader model: model to validate criterion: loss criterion num_classes: number of classes batch_size: number of samples to process simultaneously classifier: True if doing a classification task, False if doing semantic segmentation batch_metrics: (int) Metrics computed every (int) batches. If left blank, will not perform metrics. """ valid_metrics = create_metrics_dict(num_classes) model.eval() for index, data in enumerate(valid_loader): with torch.no_grad(): if classifier: inputs, labels = data if torch.cuda.is_available(): inputs = inputs.cuda() labels = labels.cuda() outputs = model(inputs) outputs_flatten = outputs else: if torch.cuda.is_available(): inputs = data['sat_img'].cuda() labels = flatten_labels(data['map_img']).cuda() else: inputs = data['sat_img'] labels = flatten_labels(data['map_img']) outputs = model(inputs) outputs_flatten = flatten_outputs(outputs, num_classes) loss = criterion(outputs_flatten, labels) valid_metrics['loss'].update(loss.item(), batch_size) # Compute metrics every 2 batches. Time consuming. if batch_metrics is not None: if index % batch_metrics == 0: a, segmentation = torch.max(outputs_flatten, dim=1) valid_metrics = report_classification( segmentation, labels, batch_size, valid_metrics) print('Validation Loss: {:.4f}'.format(valid_metrics['loss'].avg)) if batch_metrics is not None: print('Validation precision: {:.4f}'.format( valid_metrics['precision'].avg)) print('Validation recall: {:.4f}'.format(valid_metrics['recall'].avg)) print('Validation f1-score: {:.4f}'.format( valid_metrics['fscore'].avg)) return valid_metrics
def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size, classifier): """ Train the model and return the metrics of the training phase. Args: train_loader: training data loader model: model to train criterion: loss criterion optimizer: optimizer to use scheduler: learning rate scheduler num_classes: number of classes batch_size: number of samples to process simultaneously classifier: True if doing a classification task, False if doing semantic segmentation """ model.train() scheduler.step() train_metrics = create_metrics_dict(num_classes) for index, data in enumerate(train_loader): if classifier: inputs, labels = data if torch.cuda.is_available(): inputs = inputs.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = model(inputs) outputs_flatten = outputs else: if torch.cuda.is_available(): inputs = data['sat_img'].cuda() labels = flatten_labels(data['map_img']).cuda() else: inputs = data['sat_img'] labels = flatten_labels(data['map_img']) # forward optimizer.zero_grad() outputs = model(inputs) outputs_flatten = flatten_outputs(outputs, num_classes) del outputs del inputs loss = criterion(outputs_flatten, labels) train_metrics['loss'].update(loss.item(), batch_size) loss.backward() optimizer.step() # Compute accuracy and iou every 2 batches and average values. Time consuming. if index % 2 == 0: a, segmentation = torch.max(outputs_flatten, dim=1) train_metrics = report_classification(segmentation, labels, batch_size, train_metrics) train_metrics = iou(segmentation, labels, batch_size, train_metrics) print('Training Loss: {:.4f}'.format(train_metrics['loss'].avg)) print('Training iou: {:.4f}'.format(train_metrics['iou'].avg)) print('Training precision: {:.4f}'.format(train_metrics['precision'].avg)) print('Training recall: {:.4f}'.format(train_metrics['recall'].avg)) print('Training f1-score: {:.4f}'.format(train_metrics['fscore'].avg)) return train_metrics
def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size, task, ep_idx, progress_log, num_devices): """ Train the model and return the metrics of the training epoch :param train_loader: training data loader :param model: model to train :param criterion: loss criterion :param optimizer: optimizer to use :param scheduler: learning rate scheduler :param num_classes: number of classes :param batch_size: number of samples to process simultaneously :param task: segmentation or classification :param ep_idx: epoch index (for hypertrainer log) :param progress_log: progress log file (for hypertrainer log) :param num_devices: (int) number of GPU devices to use. :return: Updated training loss """ model.train() train_metrics = create_metrics_dict(num_classes) for index, data in enumerate(train_loader): progress_log.open('a', buffering=1).write( tsv_line(ep_idx, 'trn', index, len(train_loader), time.time())) if task == 'classification': inputs, labels = data if torch.cuda.is_available(): inputs = inputs.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = model(inputs) outputs_flatten = outputs elif task == 'segmentation': if num_devices > 0: inputs = data['sat_img'].cuda() labels = flatten_labels(data['map_img']).cuda() else: inputs = data['sat_img'] labels = flatten_labels(data['map_img']) # forward optimizer.zero_grad() outputs = model(inputs) outputs_flatten = flatten_outputs(outputs, num_classes) del outputs del inputs loss = criterion(outputs_flatten, labels) train_metrics['loss'].update(loss.item(), batch_size) loss.backward() optimizer.step() scheduler.step() print('Training Loss: {:.4f}'.format(train_metrics['loss'].avg)) return train_metrics
def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size, classifier, ep_idx, progress_log): """ Train the model and return the metrics of the training phase. Args: train_loader: training data loader model: model to train criterion: loss criterion optimizer: optimizer to use scheduler: learning rate scheduler num_classes: number of classes batch_size: number of samples to process simultaneously classifier: True if doing a classification task, False if doing semantic segmentation ep_idx: epoch idx (for hypertrainer log) progress_log: progress log file (for hypertrainer log) """ model.train() scheduler.step() train_metrics = create_metrics_dict(num_classes) for index, data in enumerate(train_loader): progress_log.open('a', buffering=1).write( tsv_line(ep_idx, 'trn', index, len(train_loader), time.time())) if classifier: inputs, labels = data if torch.cuda.is_available(): inputs = inputs.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = model(inputs) outputs_flatten = outputs else: if torch.cuda.is_available(): inputs = data['sat_img'].cuda() labels = flatten_labels(data['map_img']).cuda() else: inputs = data['sat_img'] labels = flatten_labels(data['map_img']) # forward optimizer.zero_grad() outputs = model(inputs) outputs_flatten = flatten_outputs(outputs, num_classes) del outputs del inputs loss = criterion(outputs_flatten, labels) train_metrics['loss'].update(loss.item(), batch_size) loss.backward() optimizer.step() print('Training Loss: {:.4f}'.format(train_metrics['loss'].avg)) return train_metrics
def evaluation(eval_loader, model, criterion, num_classes, batch_size, task, ep_idx, progress_log, batch_metrics=None, dataset='val', num_devices=0): """ Evaluate the model and return the updated metrics :param eval_loader: data loader :param model: model to evaluate :param criterion: loss criterion :param num_classes: number of classes :param batch_size: number of samples to process simultaneously :param task: segmentation or classification :param ep_idx: epoch index (for hypertrainer log) :param progress_log: progress log file (for hypertrainer log) :param batch_metrics: (int) Metrics computed every (int) batches. If left blank, will not perform metrics. :param dataset: (str) 'val or 'tst' :param num_devices: (int) Number of GPU devices to use. :return: (dict) eval_metrics """ eval_metrics = create_metrics_dict(num_classes) model.eval() for index, data in enumerate(eval_loader): progress_log.open('a', buffering=1).write( tsv_line(ep_idx, dataset, index, len(eval_loader), time.time())) with torch.no_grad(): if task == 'classification': inputs, labels = data if torch.cuda.is_available(): inputs = inputs.cuda() labels = labels.cuda() outputs = model(inputs) outputs_flatten = outputs elif task == 'segmentation': if num_devices > 0: inputs = data['sat_img'].cuda() labels = flatten_labels(data['map_img']).cuda() else: inputs = data['sat_img'] labels = flatten_labels(data['map_img']) outputs = model(inputs) outputs_flatten = flatten_outputs(outputs, num_classes) loss = criterion(outputs_flatten, labels) eval_metrics['loss'].update(loss.item(), batch_size) if (dataset == 'val') and (batch_metrics is not None): # Compute metrics every n batches. Time consuming. if index % batch_metrics == 0: a, segmentation = torch.max(outputs_flatten, dim=1) eval_metrics = report_classification( segmentation, labels, batch_size, eval_metrics) elif dataset == 'tst': a, segmentation = torch.max(outputs_flatten, dim=1) eval_metrics = report_classification(segmentation, labels, batch_size, eval_metrics) print(f"{dataset} Loss: {eval_metrics['loss'].avg}") if batch_metrics is not None: print(f"{dataset} precision: {eval_metrics['precision'].avg}") print(f"{dataset} recall: {eval_metrics['recall'].avg}") print(f"{dataset} fscore: {eval_metrics['fscore'].avg}") return eval_metrics