def check_engine_quality(self, query_num, list_of_docs): """ :param query_num: :param list_of_docs: :return: no return. prints metrics of the query. precision, recall, map. """ benchmark_path = "data\\benchmark_lbls_train.csv" df = pd.read_csv(benchmark_path) df_prec = df[df['query'] == query_num] df_prec = df_prec[df_prec['tweet'].isin(list_of_docs)] dict_for_data = df_prec.set_index('tweet')['y_true'].to_dict() rmv_lst = [] ranking = [] # Add to list for rank for doc in list_of_docs: try: ranking.append(dict_for_data[int(doc)]) except: rmv_lst.append(doc) for d in rmv_lst: list_of_docs.remove(d) data_df = pd.DataFrame({ 'query': query_num, 'tweet': list_of_docs, 'y_true': ranking }) df_rec = df[df['query'] == query_num] recall_total = len(df_rec[df_rec['y_true'] == 1.0]) # print("total Relevant doc found with tag 1 :" , len (data_df[data_df['y_true'] == 1.0])) # print("total NON relevant doc found with tag 0 :" , len (data_df[data_df['y_true'] == 0])) # print("found total of", len(df_prec), "tagged docs") # Calculate and print prec5 = metrics.precision_at_n(data_df, query_num, 5) prec10 = metrics.precision_at_n(data_df, query_num, 10) prec50 = metrics.precision_at_n(data_df, query_num, 50) prec_total = metrics.precision(data_df, True, query_number=query_num) map_of_query = metrics.map(data_df) recall_val = metrics.recall_single(data_df, recall_total, query_num) self.map_list.append(map_of_query) self.prec5_list.append(prec5) self.prec10_list.append(prec10) self.prec50_list.append(prec50) self.prec_total_list.append(prec_total) self.recall_list.append(recall_val) print() print("precision at 5 of query", query_num, "is :", prec5) print("precision at 10 of query", query_num, "is :", prec10) print("precision at 50 of query", query_num, "is :", prec50) print("precision of query", query_num, "is :", prec_total) print("recall of query", query_num, "is :", recall_val) print("map of query", query_num, "is :", map_of_query)
'precision@5': [], 'precision@10': [], 'precision@50': [], 'recall': [] } for query_num in range(1, 36): dict_data['query'].append(query_num) dict_data['recall'].append( metrics.recall_single(q_results_labeled, q2n_relevant.get(query_num), query_num)) dict_data['precision'].append( metrics.precision(q_results_labeled, True, query_num)) dict_data['precision@5'].append( metrics.precision_at_n(q_results_labeled, query_num, 5)) dict_data['precision@10'].append( metrics.precision_at_n(q_results_labeled, query_num, 10)) dict_data['precision@50'].append( metrics.precision_at_n(q_results_labeled, query_num, 50)) df_data = pd.DataFrame(dict_data, columns=[ 'query', 'precision', 'precision@5', 'precision@10', 'precision@50', 'recall' ]) # print(df_data) df_data.to_excel(engine_module + "_output.xlsx") # test that the average across queries of precision,