from imblearn.over_sampling import SMOTE from metrics_list import metric_list path = "High_IR_Data_cross_folder" dirs = os.listdir(path) #Get files in the folder First_line = True for Dir in dirs: print("Data Set Name: ", Dir) dir_path = path + "/" + Dir files = os.listdir(dir_path) # Get files in the folder methods = ["xGBoost", "SMOTE", "SMOTE-SMOTE"] for m in methods: Num_Cross_Folders = 5 ml_record = metric_list(np.array([1]), np.array([1]), Num_Cross_Folders) i = 0 for file in files: name = dir_path + '/' + file r = np.load(name) Positive_Features_train = r["P_F_tr"] Num_Positive_train = Positive_Features_train.shape[0] Positive_Labels_train = np.linspace(1, 1, Num_Positive_train) Positive_Features_test = r["P_F_te"] Num_Positive_test = Positive_Features_test.shape[0] Positive_Labels_test = np.linspace(1, 1, Num_Positive_test) Negative_Features_train = r["N_F_tr"] Num_Negative_train = Negative_Features_train.shape[0]
dirs = os.listdir(path) #Get files in the folder for Dir in dirs: print("Data Set Name: ", Dir) dir_path = path + "/" + Dir files = os.listdir(dir_path) # Get files in the folder f_i = 0 par_a = [] par_b = [] Num_Gamma = 100 gamma = np.logspace(-4, 2, Num_Gamma) Num_C = 100 C = np.logspace(-2, 4, Num_C) Num_Cross_Folders = 3 ml_record = metric_list(gamma, C, Num_Cross_Folders) ''' max_depth = np.arange(3,10,1) # best = 3 min_child_weight = np.arange(1,6,1) # best = 1 gamma = np.arange(0,1,0.1) # best = 0.0 subsample = np.arange(0.5,1,0.1) # best = 0.5 colsample_bytree = np.arange(0.5,1,0.1) # best = 0.6 reg_alpha = np.logspace(-5, 5, 10) # best = 0.002 learning_rate = np.logspace(-2, 0, 10) # best = 0.215 ''' Num_Cross_Folders = 3 ml_record = metric_list(gamma, C, Num_Cross_Folders) i = 0 for file in files: