예제 #1
0
    def __init__(self, spaces, ess_bdr, block_offsets, rel_tol, abs_tol, iter,
                 mu):

        # Array<Vector *> -> tuple
        super(RubberOperator,
              self).__init__(spaces[0].GetVSize() + spaces[1].GetVSize())
        rhs = (None, None)

        self.spaces = spaces
        self.mu = mfem.ConstantCoefficient(mu)
        self.block_offsets = block_offsets

        Hform = mfem.BlockNonlinearForm(spaces)
        Hform.AddDomainIntegrator(
            mfem.IncompressibleNeoHookeanIntegrator(self.mu))
        Hform.SetEssentialBC(ess_bdr, rhs)
        self.Hform = Hform

        a = mfem.BilinearForm(self.spaces[1])
        one = mfem.ConstantCoefficient(1.0)
        a.AddDomainIntegrator(mfem.MassIntegrator(one))
        a.Assemble()
        a.Finalize()
        pressure_mass = a.LoseMat()

        self.j_prec = JacobianPreconditioner(spaces, pressure_mass,
                                             block_offsets)

        j_gmres = mfem.GMRESSolver()
        j_gmres.iterative_mode = False
        j_gmres.SetRelTol(1e-12)
        j_gmres.SetAbsTol(1e-12)
        j_gmres.SetMaxIter(300)
        j_gmres.SetPrintLevel(0)
        j_gmres.SetPreconditioner(self.j_prec)
        self.j_solver = j_gmres

        newton_solver = mfem.NewtonSolver()
        # Set the newton solve parameters
        newton_solver.iterative_mode = True
        newton_solver.SetSolver(self.j_solver)
        newton_solver.SetOperator(self)
        newton_solver.SetPrintLevel(1)
        newton_solver.SetRelTol(rel_tol)
        newton_solver.SetAbsTol(abs_tol)
        newton_solver.SetMaxIter(iter)
        self.newton_solver = newton_solver
예제 #2
0
파일: ex3.py 프로젝트: matthiastaus/PyMFEM
# 7. Define the solution vector x as a finite element grid function
#    corresponding to fespace. Initialize x by projecting the exact
#    solution. Note that only values from the boundary edges will be used
#    when eliminating the non-homogeneous boundary condition to modify the
#    r.h.s. vector b.

#from mfem.examples.ex3 import E_exact_cb
x = mfem.GridFunction(fespace)
E = E_exact()
x.ProjectCoefficient(E);

# 8. Set up the bilinear form corresponding to the EM diffusion operator
#       curl muinv curl + sigma I, by adding the curl-curl and the mass domain
#       integrators.

muinv = mfem.ConstantCoefficient(1.0);
sigma = mfem.ConstantCoefficient(1.0);
a = mfem.BilinearForm(fespace);
a.AddDomainIntegrator(mfem.CurlCurlIntegrator(muinv));
a.AddDomainIntegrator(mfem.VectorFEMassIntegrator(sigma));

# 9. Assemble the bilinear form and the corresponding linear system,
#       applying any necessary transformations such as: eliminating boundary
#       conditions, applying conforming constraints for non-conforming AMR,
#       static condensation, etc.


if (static_cond):  a.EnableStaticCondensation()
a.Assemble();

A = mfem.SparseMatrix()
예제 #3
0
print('Number of finite element unknowns: ' + str(fespace.GetTrueVSize()))
# 5. Determine the list of true (i.e. conforming) essential boundary dofs.
#    In this example, the boundary conditions are defined by marking all
#    the boundary attributes from the mesh as essential (Dirichlet) and
#    converting them to a list of true dofs.
ess_tdof_list = mfem.intArray()
if mesh.bdr_attributes.Size() > 0:
    ess_bdr = mfem.intArray([1] * mesh.bdr_attributes.Max())
    ess_bdr = mfem.intArray(mesh.bdr_attributes.Max())
    ess_bdr.Assign(1)
    fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list)
#6. Set up the linear form b(.) which corresponds to the right-hand side of
#   the FEM linear system, which in this case is (1,phi_i) where phi_i are
#   the basis functions in the finite element fespace.
b = mfem.LinearForm(fespace)
one = mfem.ConstantCoefficient(1.0)
b.AddDomainIntegrator(mfem.DomainLFIntegrator(one))
b.Assemble()
#7. Define the solution vector x as a finite element grid function
#   corresponding to fespace. Initialize x with initial guess of zero,
#   which satisfies the boundary conditions.
x = mfem.GridFunction(fespace)
x.Assign(0.0)
#8. Set up the bilinear form a(.,.) on the finite element space
#   corresponding to the Laplacian operator -Delta, by adding the Diffusion
#   domain integrator.
a = mfem.BilinearForm(fespace)
a.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
#9. Assemble the bilinear form and the corresponding linear system,
#   applying any necessary transformations such as: eliminating boundary
#   conditions, applying conforming constraints for non-conforming AMR,
예제 #4
0
    ess_bdr = intArray(mesh.bdr_attributes.Max())
    if set_bc: ess_bdr.Assign(1)
    else: ess_bdr.Assign(0)
    fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list)

b = mfem.LinearForm(fespace)
f = f_exact()
dd = mfem.VectorFEDomainLFIntegrator(f)
b.AddDomainIntegrator(dd)
b.Assemble()

x = mfem.GridFunction(fespace)
F = E_exact()
x.ProjectCoefficient(F)

alpha = mfem.ConstantCoefficient(1.0)
beta = mfem.ConstantCoefficient(1.0)
a = mfem.BilinearForm(fespace)
a.AddDomainIntegrator(mfem.DivDivIntegrator(alpha))
a.AddDomainIntegrator(mfem.VectorFEMassIntegrator(beta))

if (static_cond): a.EnableStaticCondensation()
elif (hybridization):
    hfec = mfem.DG_Interface_FECollection(order - 1, dim)
    hfes = mfem.FiniteElementSpace(mesh, hfec)
    a.EnableHybridization(hfes, mfem.NormalTraceJumpIntegrator(),
                          ess_tdof_list)
a.Assemble()

A = mfem.SparseMatrix()
B = mfem.Vector()
예제 #5
0
def run(order=1,
        static_cond=False,
        meshfile=def_meshfile,
        visualization=False):

    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()

    #   3. Refine the mesh to increase the resolution. In this example we do
    #      'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
    #      largest number that gives a final mesh with no more than 50,000
    #      elements.
    ref_levels = int(np.floor(
        np.log(50000. / mesh.GetNE()) / np.log(2.) / dim))
    for x in range(ref_levels):
        mesh.UniformRefinement()

    #5. Define a finite element space on the mesh. Here we use vector finite
    #   elements, i.e. dim copies of a scalar finite element space. The vector
    #   dimension is specified by the last argument of the FiniteElementSpace
    #   constructor. For NURBS meshes, we use the (degree elevated) NURBS space
    #   associated with the mesh nodes.
    if order > 0:
        fec = mfem.H1_FECollection(order, dim)
    elif mesh.GetNodes():
        fec = mesh.GetNodes().OwnFEC()
        prinr("Using isoparametric FEs: " + str(fec.Name()))
    else:
        order = 1
        fec = mfem.H1_FECollection(order, dim)
    fespace = mfem.FiniteElementSpace(mesh, fec)
    print('Number of finite element unknowns: ' + str(fespace.GetTrueVSize()))
    # 5. Determine the list of true (i.e. conforming) essential boundary dofs.
    #    In this example, the boundary conditions are defined by marking all
    #    the boundary attributes from the mesh as essential (Dirichlet) and
    #    converting them to a list of true dofs.
    ess_tdof_list = mfem.intArray()
    if mesh.bdr_attributes.Size() > 0:
        ess_bdr = mfem.intArray([1] * mesh.bdr_attributes.Max())
        ess_bdr = mfem.intArray(mesh.bdr_attributes.Max())
        ess_bdr.Assign(1)
        fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list)
    #6. Set up the linear form b(.) which corresponds to the right-hand side of
    #   the FEM linear system, which in this case is (1,phi_i) where phi_i are
    #   the basis functions in the finite element fespace.
    b = mfem.LinearForm(fespace)
    one = mfem.ConstantCoefficient(1.0)
    b.AddDomainIntegrator(mfem.DomainLFIntegrator(one))
    b.Assemble()
    #7. Define the solution vector x as a finite element grid function
    #   corresponding to fespace. Initialize x with initial guess of zero,
    #   which satisfies the boundary conditions.
    x = mfem.GridFunction(fespace)
    x.Assign(0.0)
    #8. Set up the bilinear form a(.,.) on the finite element space
    #   corresponding to the Laplacian operator -Delta, by adding the Diffusion
    #   domain integrator.
    a = mfem.BilinearForm(fespace)
    a.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
    #9. Assemble the bilinear form and the corresponding linear system,
    #   applying any necessary transformations such as: eliminating boundary
    #   conditions, applying conforming constraints for non-conforming AMR,
    #   static condensation, etc.
    if static_cond: a.EnableStaticCondensation()
    a.Assemble()

    A = mfem.OperatorPtr()
    B = mfem.Vector()
    X = mfem.Vector()

    a.FormLinearSystem(ess_tdof_list, x, b, A, X, B)
    print("Size of linear system: " + str(A.Height()))

    # 10. Solve
    AA = mfem.OperatorHandle2SparseMatrix(A)
    M = mfem.GSSmoother(AA)
    mfem.PCG(AA, M, B, X, 1, 200, 1e-12, 0.0)

    # 11. Recover the solution as a finite element grid function.
    a.RecoverFEMSolution(X, b, x)
    # 12. Save the refined mesh and the solution. This output can be viewed later
    #     using GLVis: "glvis -m refined.mesh -g sol.gf".
    mesh.Print('refined.mesh', 8)
    x.Save('sol.gf', 8)

    #13. Send the solution by socket to a GLVis server.
    if (visualization):
        sol_sock = mfem.socketstream("localhost", 19916)
        sol_sock.precision(8)
        sol_sock.send_solution(mesh, x)
예제 #6
0
    for i in range(2):
        mesh.UniformRefinement()
    mesh.SetCurvature(2)

# 4. Define a finite element space on the mesh. The polynomial order is
#      one (linear) by default, but this can be changed on the command line.
fec = mfem.H1_FECollection(order, dim)
fespace = mfem.FiniteElementSpace(mesh, fec)

# 5. As in Example 1, we set up bilinear and linear forms corresponding to
#    the Laplace problem -\Delta u = 1. We don't assemble the discrete
#    problem yet, this will be done in the main loop.
a = mfem.BilinearForm(fespace)
b = mfem.LinearForm(fespace)

one = mfem.ConstantCoefficient(1.0)
zero = mfem.ConstantCoefficient(0.0)

integ = mfem.DiffusionIntegrator(one)
a.AddDomainIntegrator(integ)
b.AddDomainIntegrator(mfem.DomainLFIntegrator(one))

# 6. The solution vector x and the associated finite element grid function
#    will be maintained over the AMR iterations. We initialize it to zero.
x = mfem.GridFunction(fespace)
x.Assign(0.0)

#  7. All boundary attributes will be used for essential (Dirichlet) BC.
ess_bdr = intArray(mesh.bdr_attributes.Max())
ess_bdr.Assign(1)
예제 #7
0
def ex19_main(args):
    ref_levels = args.refine
    order = args.order
    visualization = args.visualization
    mu = args.shear_modulus
    newton_rel_tol = args.relative_tolerance
    newton_abs_tol = args.absolute_tolerance
    newton_iter = args.newton_iterations

    parser.print_options(args)

    meshfile = expanduser(join(path, 'data', args.mesh))
    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()

    for lev in range(ref_levels):
        mesh.UniformRefinement()

    #  4. Define the shear modulus for the incompressible Neo-Hookean material
    c_mu = mfem.ConstantCoefficient(mu)

    #  5. Define the finite element spaces for displacement and pressure
    #     (Taylor-Hood elements). By default, the displacement (u/x) is a second
    #     order vector field, while the pressure (p) is a linear scalar function.
    quad_coll = mfem.H1_FECollection(order, dim)
    lin_coll = mfem.H1_FECollection(order - 1, dim)

    R_space = mfem.FiniteElementSpace(mesh, quad_coll, dim,
                                      mfem.Ordering.byVDIM)
    W_space = mfem.FiniteElementSpace(mesh, lin_coll)

    spaces = [R_space, W_space]
    R_size = R_space.GetVSize()
    W_size = W_space.GetVSize()

    #   6. Define the Dirichlet conditions (set to boundary attribute 1 and 2)
    ess_bdr_u = mfem.intArray(R_space.GetMesh().bdr_attributes.Max())
    ess_bdr_p = mfem.intArray(W_space.GetMesh().bdr_attributes.Max())
    ess_bdr_u.Assign(0)
    ess_bdr_u[0] = 1
    ess_bdr_u[1] = 1
    ess_bdr_p.Assign(0)
    ess_bdr = [ess_bdr_u, ess_bdr_p]

    print("***********************************************************")
    print("dim(u) = " + str(R_size))
    print("dim(p) = " + str(W_size))
    print("dim(u+p) = " + str(R_size + W_size))
    print("***********************************************************")

    block_offsets = intArray([0, R_size, W_size])
    block_offsets.PartialSum()

    xp = mfem.BlockVector(block_offsets)

    #  9. Define grid functions for the current configuration, reference
    #     configuration, final deformation, and pressure
    x_gf = mfem.GridFunction(R_space)
    x_ref = mfem.GridFunction(R_space)
    x_def = mfem.GridFunction(R_space)
    p_gf = mfem.GridFunction(W_space)

    x_gf.MakeRef(R_space, xp.GetBlock(0), 0)
    p_gf.MakeRef(W_space, xp.GetBlock(1), 0)

    deform = InitialDeformation(dim)
    refconfig = ReferenceConfiguration(dim)

    x_gf.ProjectCoefficient(deform)
    x_ref.ProjectCoefficient(refconfig)
    p_gf.Assign(0.0)

    #  10. Initialize the incompressible neo-Hookean operator
    oper = RubberOperator(spaces, ess_bdr, block_offsets, newton_rel_tol,
                          newton_abs_tol, newton_iter, mu)
    #  11. Solve the Newton system
    oper.Solve(xp)

    #  12. Compute the final deformation
    mfem.subtract_vector(x_gf, x_ref, x_def)

    #  13. Visualize the results if requested
    if (visualization):
        vis_u = mfem.socketstream("localhost", 19916)
        visualize(vis_u, mesh, x_gf, x_def, "Deformation", True)
        vis_p = mfem.socketstream("localhost", 19916)
        visualize(vis_p, mesh, x_gf, p_gf, "Deformation", True)

    #  14. Save the displaced mesh, the final deformation, and the pressure
    nodes = x_gf
    owns_nodes = 0
    nodes, owns_nodes = mesh.SwapNodes(nodes, owns_nodes)

    mesh.Print('deformed.mesh', 8)
    p_gf.Save('pressure.sol', 8)
    x_def.Save("deformation.sol", 8)
예제 #8
0
#    boundary attribute 1 from the mesh as essential and converting it to a
#    list of true dofs.
ess_tdof_list = intArray()
ess_bdr = intArray([1] + [0] * (mesh.bdr_attributes.Max() - 1))
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list)
# 7. Set up the linear form b(.) which corresponds to the right-hand side of
#    the FEM linear system. In this case, b_i equals the boundary integral
#    of f*phi_i where f represents a "pull down" force on the Neumann part
#    of the boundary and phi_i are the basis functions in the finite element
#    fespace. The force is defined by the VectorArrayCoefficient object f,
#    which is a vector of Coefficient objects. The fact that f is non-zero
#    on boundary attribute 2 is indicated by the use of piece-wise constants
#    coefficient for its last component.
f = mfem.VectorArrayCoefficient(dim)
for i in range(dim - 1):
    f.Set(i, mfem.ConstantCoefficient(0.0))

pull_force = mfem.Vector([0] * mesh.bdr_attributes.Max())
pull_force[1] = -1.0e-2
f.Set(dim - 1, mfem.PWConstCoefficient(pull_force))

b = mfem.LinearForm(fespace)
b.AddBoundaryIntegrator(mfem.VectorBoundaryLFIntegrator(f))
print('r.h.s...')
b.Assemble()
# 8. Define the solution vector x as a finite element grid function
#    corresponding to fespace. Initialize x with initial guess of zero,
#    which satisfies the boundary conditions.
x = mfem.GridFunction(fespace)
x.Assign(0.0)
# 9. Set up the bilinear form a(.,.) on the finite element space
예제 #9
0
파일: ex10.py 프로젝트: InSAR-invert/PyMFEM
    def __init__(self, fespace, ess_bdr, visc, mu, K):
        mfem.PyTimeDependentOperator.__init__(self, 2 * fespace.GetVSize(),
                                              0.0)

        rel_tol = 1e-8
        skip_zero_entries = 0
        ref_density = 1.0
        self.z = mfem.Vector(self.Height() / 2)
        self.fespace = fespace
        self.viscosity = visc

        M = mfem.BilinearForm(fespace)
        S = mfem.BilinearForm(fespace)
        H = mfem.NonlinearForm(fespace)
        self.M = M
        self.H = H
        self.S = S

        rho = mfem.ConstantCoefficient(ref_density)
        M.AddDomainIntegrator(mfem.VectorMassIntegrator(rho))
        M.Assemble(skip_zero_entries)
        M.EliminateEssentialBC(ess_bdr)
        M.Finalize(skip_zero_entries)

        M_solver = mfem.CGSolver()
        M_prec = mfem.DSmoother()
        M_solver.iterative_mode = False
        M_solver.SetRelTol(rel_tol)
        M_solver.SetAbsTol(0.0)
        M_solver.SetMaxIter(30)
        M_solver.SetPrintLevel(0)
        M_solver.SetPreconditioner(M_prec)
        M_solver.SetOperator(M.SpMat())

        self.M_solver = M_solver
        self.M_prec = M_prec

        model = mfem.NeoHookeanModel(mu, K)
        H.AddDomainIntegrator(mfem.HyperelasticNLFIntegrator(model))
        H.SetEssentialBC(ess_bdr)
        self.model = model

        visc_coeff = mfem.ConstantCoefficient(visc)
        S.AddDomainIntegrator(mfem.VectorDiffusionIntegrator(visc_coeff))
        S.Assemble(skip_zero_entries)
        S.EliminateEssentialBC(ess_bdr)
        S.Finalize(skip_zero_entries)

        self.backward_euler_oper = BackwardEulerOperator(M, S, H)

        J_prec = mfem.DSmoother(1)
        J_minres = mfem.MINRESSolver()
        J_minres.SetRelTol(rel_tol)
        J_minres.SetAbsTol(0.0)
        J_minres.SetMaxIter(300)
        J_minres.SetPrintLevel(-1)
        J_minres.SetPreconditioner(J_prec)

        self.J_solver = J_minres
        self.J_prec = J_prec

        newton_solver = mfem.NewtonSolver()
        newton_solver.iterative_mode = False
        newton_solver.SetSolver(self.J_solver)
        newton_solver.SetOperator(self.backward_euler_oper)
        newton_solver.SetPrintLevel(1)
        #print Newton iterations
        newton_solver.SetRelTol(rel_tol)
        newton_solver.SetAbsTol(0.0)
        newton_solver.SetMaxIter(10)
        self.newton_solver = newton_solver