예제 #1
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators/Solvers, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        applyop.aimCns(self.ref_base,
                       self.squash_ctl,
                       axis="yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.ctl,
                       maintainOffset=False)
        applyop.aimCns(self.ref_squash,
                       self.ctl,
                       axis="-yx",
                       wupType=2,
                       wupVector=[1, 0, 0],
                       wupObject=self.squash_ctl,
                       maintainOffset=False)
        bIncrement = 1.0
        blend = 0
        for i, div_cns in enumerate(self.div_cns):
            intMatrix = applyop.gear_intmatrix_op(
                self.ref_base.attr("worldMatrix"),
                self.ref_squash.attr("worldMatrix"), blend)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      div_cns.attr("parentInverseMatrix[0]"),
                                      div_cns)

            blend = blend + bIncrement

        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.squash_ctl, self.ctl)

        rootWorld_node = node.createDecomposeMatrixNode(
            self.ctl.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleY")

        div_node = node.createDivNode(div_node + ".outputX", d)
        rev_node = node.createReverseNode(div_node + ".outputX")
        add_node = pm.createNode("plusMinusAverage")

        add_node.input1D[0].set(1.0)
        rev_node.outputX >> add_node.input1D[1]

        div_node.outputX >> self.ref_base.scaleY
        add_node.output1D >> self.ref_base.scaleX
        add_node.output1D >> self.ref_base.scaleZ
예제 #2
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        pairs = [[self.top_ctl, self.bottom_npo, 1, 2],
                 [self.bottom_ctl, self.bottom_pivot, 2, 1],
                 [self.ext_ctl, self.int_npo, 3, 4],
                 [self.int_ctl, self.int_pivot, 4, 3]]

        for pair in pairs:
            d = vector.getDistance(self.guide.apos[pair[2]],
                                   self.guide.apos[pair[3]])

            sum_node = node.createPlusMinusAverage1D([d, pair[0].ty])
            mul_node = node.createMulNode(pair[0].ty, self.volume_att)
            sum2_node = node.createPlusMinusAverage1D([d, mul_node.outputX])
            mul2_node = node.createDivNode(
                [sum2_node.output1D, sum_node.output1D, sum2_node.output1D],
                [d, d, d])

            sum3D_node = pm.createNode("plusMinusAverage")
            sum3D_node.attr("operation").set(2)
            sum3D_node.input3D[0].input3Dx.set(2)
            sum3D_node.input3D[0].input3Dz.set(2)
            mul2_node.outputX >> sum3D_node.input3D[1].input3Dx
            mul2_node.outputZ >> sum3D_node.input3D[1].input3Dz
            sum3D_node.output3D.output3Dx >> pair[1].sx
            mul2_node.outputY >> pair[1].sy
            sum3D_node.output3D.output3Dx >> pair[1].sz
예제 #3
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ===========================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root,
            self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef,
            "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)
        try:
            for shp in self.fk0_ctl.getShapes():
                pm.connectAttr(fkvis_node.outputX, shp.attr("visibility"))
            for shp in self.fk1_ctl.getShapes():
                pm.connectAttr(fkvis_node.outputX, shp.attr("visibility"))
            for shp in self.fk2_ctl.getShapes():
                pm.connectAttr(fkvis_node.outputX, shp.attr("visibility"))

            # ik
            for shp in self.upv_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ikcns_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ik_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        except RuntimeError:
            pm.displayInfo("Visibility already connecte")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out,
                                           self.root_ctl,
                                           self.ik_ref,
                                           self.upv_ctl,
                                           self.fk_ctl[0],
                                           self.fk_ctl[1],
                                           self.fk_ref,
                                           self.length0,
                                           self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        self.ikhArmRef, self.tmpCrv = applyop.splineIK(
            self.getName("legRollRef"),
            self.rollRef,
            parent=self.root,
            cParent=self.bone0)

        pm.pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)

        pm.pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        pm.scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        applyop.oriCns(self.bone1, self.tws2_loc, maintainOffset=False)

        applyop.oriCns(self.tws_ref, self.tws2_rot)

        if self.settings["div0"]:
            ori_ref = self.rollRef[0]
        else:
            ori_ref = self.bone0

        applyop.oriCns(ori_ref, self.tws0_loc, maintainOffset=True)

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .0)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node.distance,
                                      distB_node.distance)
        div_node = node.createDivNode(add_node.output,
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node.inputMatrix)

        div_node2 = node.createDivNode(div_node.outputX,
                                       dm_node.outputScaleX)

        self.volDriver_att = div_node2.outputX

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            subdiv = 40
            if i < (self.settings["div0"] + 1):
                perc = i * .5 / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .501
            else:
                perc = .5 + \
                    (i - self.settings["div0"] - 1.0) * .5 / \
                    (self.settings["div1"] + 1.0)

            perc = max(.0001, min(.999, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns,
                    [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1.0 - perc,
                    subdiv)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns,
                    [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc,
                    subdiv)

            pm.connectAttr(self.resample_att, o_node.resample)
            pm.connectAttr(self.absolute_att, o_node.absolute)

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node.blend)
            pm.connectAttr(self.volDriver_att, o_node.driver)
            pm.connectAttr(self.st_att[i], o_node.stretch)
            pm.connectAttr(self.sq_att[i], o_node.squash)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        return
예제 #4
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.roll_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        # NOTE: Ideally we should not change hierarchy or move object after
        # object generation method. But is much easier this way since every
        # part is in the final and correct position
        # after the  ctrn_loc is in the correct position with the ikfk2bone op

        # point constrain tip reference
        pm.pointConstraint(self.ik_ctl, self.tip_ref, mo=False)

        # interpolate transform  mid point locator
        int_matrix = applyop.gear_intmatrix_op(
            self.armChainUpvRef[0].attr("worldMatrix"),
            self.tip_ref.attr("worldMatrix"), .5)
        applyop.gear_mulmatrix_op(
            int_matrix.attr("output"),
            self.interpolate_lvl.attr("parentInverseMatrix[0]"),
            self.interpolate_lvl)

        # match roll ctl npo to ctrn_loc current transform (so correct orient)
        transform.matchWorldTransform(self.ctrn_loc, self.roll_ctl_npo)

        # match roll ctl npo to interpolate transform current position
        pos = self.interpolate_lvl.getTranslation(space="world")
        self.roll_ctl_npo.setTranslation(pos, space="world")

        # parent constraint roll control npo to interpolate trans
        pm.parentConstraint(self.interpolate_lvl, self.roll_ctl_npo, mo=True)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"), o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
            rollMulVal = 1
        else:
            mulVal = 1
            rollMulVal = -1
        roll_m_node = node.createMulNode(self.roll_att, mulVal)
        roll_m_node2 = node.createMulNode(self.roll_ctl.attr("rx"), rollMulVal)
        node.createPlusMinusAverage1D(
            [roll_m_node.outputX, roll_m_node2.outputX],
            operation=1,
            output=o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo,
                           maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1B_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo,
                            maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1B_rot, maintainOffset=False)

        if self.negate:
            axis = "xz"
            axisb = "-xz"
        else:
            axis = "-xz"
            axisb = "xz"
        applyop.aimCns(self.tws1_loc,
                       self.root,
                       axis=axis,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.tws1B_loc,
                       self.eff_loc,
                       axis=axisb,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.thick_ctl,
                           self.tws1B_loc,
                           maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))
        pm.connectAttr(add_node + ".output", self.tws1B_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"),
                         self.rollRef,
                         parent=self.root,
                         cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        b_twist = False
        for i, div_cns in enumerate(self.div_cns):

            if self.settings["supportJoints"]:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                elif i < (self.settings["div0"] + 4):
                    b_twist = True
                    perc = .51

                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 3.0) * .5 / \
                        (self.settings["div1"] + 1.0)
            else:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    b_twist = True
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # mid twist distribution
            if b_twist:
                mid_twist = self.tws1B_rot
            else:
                mid_twist = self.tws1_rot

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, mid_twist, self.tws0_rot],
                    1.0 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, mid_twist, self.tws2_rot], perc,
                    40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        # connect_reader
        pm.parentConstraint(self.bone0, self.readerA, mo=True)
        pm.parentConstraint(self.bone1, self.readerB, mo=True)

        # connect auto thickness
        if self.negate and not self.settings["mirrorMid"]:
            d_val = 180 / self.length1
        else:
            d_val = -180 / self.length1
        div_thick_node = node.createDivNode(self.elbow_thickness_att, d_val)
        node.createMulNode(div_thick_node.outputX, self.readerB.ry,
                           self.thick_lvl.tx)

        return
예제 #5
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # setup out channels. This channels are pass through for stack
        node.createPlusMinusAverage1D(
            [self.mid_wide_att, self.mid_wide_in_att, -1.0], 1,
            self.mid_wide_out_att)
        node.createPlusMinusAverage1D(
            [self.mid_depth_att, self.mid_depth_in_att, -1.0], 1,
            self.mid_depth_out_att)

        node.createPlusMinusAverage1D(
            [self.tip_wide_att, self.tip_wide_in_att, -1.0], 1,
            self.tip_wide_out_att)
        node.createPlusMinusAverage1D(
            [self.tip_depth_att, self.tip_depth_in_att, -1.0], 1,
            self.tip_depth_out_att)

        node.createPlusMinusAverage1D(
            [self.mid_twist_att, self.mid_twist_in_att], 1,
            self.mid_twist_out_att)

        node.createPlusMinusAverage1D(
            [self.tip_twist_att, self.tip_twist_in_att], 1,
            self.tip_twist_out_att)

        if not self.settings["simpleFK"]:
            dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
            if self.settings["keepLength"]:
                arclen_node = pm.arclen(self.mst_crv, ch=True)
                alAttr = pm.getAttr(arclen_node + ".arcLength")
                ration_node = node.createMulNode(self.length_ratio_att, alAttr)

                pm.addAttr(self.mst_crv, ln="length_ratio", k=True, w=True)
                node.createDivNode(arclen_node.arcLength, ration_node.outputX,
                                   self.mst_crv.length_ratio)

                div_node_scl = node.createDivNode(self.mst_crv.length_ratio,
                                                  dm_node_scl.outputScaleX)

            step = 1.000 / (self.def_number - 1)
            step_mid = 1.000 / ((self.def_number - 1) / 2.0)
            u = 0.000
            u_mid = 0.000
            pass_mid = False
            for i in range(self.def_number):
                cnsUpv = applyop.pathCns(self.upv_cns[i],
                                         self.upv_crv,
                                         cnsType=False,
                                         u=u,
                                         tangent=False)

                cns = applyop.pathCns(self.div_cns[i], self.mst_crv, False, u,
                                      True)

                # Connecting the scale for scaling compensation
                # for axis, AX in zip("xyz", "XYZ"):
                for axis, AX in zip("x", "X"):
                    pm.connectAttr(
                        dm_node_scl.attr("outputScale{}".format(AX)),
                        self.div_cns[i].attr("s{}".format(axis)))

                if self.settings["keepLength"]:

                    div_node2 = node.createDivNode(u, div_node_scl.outputX)

                    cond_node = node.createConditionNode(
                        div_node2.input1X, div_node2.outputX, 4,
                        div_node2.input1X, div_node2.outputX)

                    pm.connectAttr(cond_node + ".outColorR",
                                   cnsUpv + ".uValue")
                    pm.connectAttr(cond_node + ".outColorR", cns + ".uValue")

                cns.setAttr("worldUpType", 1)
                cns.setAttr("frontAxis", 0)
                cns.setAttr("upAxis", 1)

                pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                               cns.attr("worldUpMatrix"))

                # Connect scale Wide and Depth
                # wide and Depth
                mid_mul_node = node.createMulNode(
                    [self.mid_wide_att, self.mid_depth_att],
                    [self.mid_wide_in_att, self.mid_depth_in_att])
                mid_mul_node2 = node.createMulNode(
                    [mid_mul_node.outputX, mid_mul_node.outputY],
                    [u_mid, u_mid])
                mid_mul_node3 = node.createMulNode(
                    [mid_mul_node2.outputX, mid_mul_node2.outputY], [
                        dm_node_scl.attr("outputScaleX"),
                        dm_node_scl.attr("outputScaleY")
                    ])
                tip_mul_node = node.createMulNode(
                    [self.tip_wide_att, self.tip_depth_att],
                    [self.tip_wide_in_att, self.tip_depth_in_att])
                tip_mul_node2 = node.createMulNode(
                    [tip_mul_node.outputX, tip_mul_node.outputY], [u, u])
                node.createPlusMinusAverage1D([
                    mid_mul_node3.outputX, 1.0 - u_mid, tip_mul_node2.outputX,
                    1.0 - u, -1.0
                ], 1, self.div_cns[i].attr("sy"))
                node.createPlusMinusAverage1D([
                    mid_mul_node3.outputY, 1.0 - u_mid, tip_mul_node2.outputY,
                    1.0 - u, -1.0
                ], 1, self.div_cns[i].attr("sz"))

                # Connect Twist "cns.frontTwist"
                twist_mul_node = node.createMulNode(
                    [self.mid_twist_att, self.tip_twist_att], [u_mid, u])
                twist_mul_node2 = node.createMulNode(
                    [self.mid_twist_in_att, self.tip_twist_in_att], [u_mid, u])
                node.createPlusMinusAverage1D([
                    twist_mul_node.outputX,
                    twist_mul_node.outputY,
                    twist_mul_node2.outputX,
                    twist_mul_node2.outputY,
                ], 1, cns.frontTwist)

                # u_mid calc
                if u_mid >= 1.0 or pass_mid:
                    u_mid -= step_mid
                    pass_mid = True
                else:
                    u_mid += step_mid

                if u_mid > 1.0:
                    u_mid = 1.0

                # ensure the tip is never affected byt the mid
                if i == (self.def_number - 1):
                    u_mid = 0.0
                u += step

            if self.settings["keepLength"]:
                # add the safty distance offset
                self.tweakTip_npo.attr("tx").set(self.off_dist)
                # connect vis line ref
                for shp in self.line_ref.getShapes():
                    pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        # CONNECT STACK
        # master components
        mstr_global = self.settings["masterChainGlobal"]
        mstr_local = self.settings["masterChainLocal"]
        if mstr_global:
            mstr_global = self.rig.components[mstr_global]
        if mstr_local:
            mstr_local = self.rig.components[mstr_local]

        # connect twist and scale
        if mstr_global and mstr_local:
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_twist_out, mstr_local.root.mid_twist_out
            ], 1, self.mid_twist_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_twist_out, mstr_local.root.tip_twist_out
            ], 1, self.tip_twist_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_wide_out, mstr_local.root.mid_wide_out, -1
            ], 1, self.mid_wide_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_wide_out, mstr_local.root.tip_wide_out, -1
            ], 1, self.tip_wide_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_depth_out, mstr_local.root.mid_depth_out,
                -1
            ], 1, self.mid_depth_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_depth_out, mstr_local.root.tip_depth_out,
                -1
            ], 1, self.tip_depth_in_att)
        elif mstr_local or mstr_global:
            for master_chain in [mstr_local, mstr_global]:
                if master_chain:
                    pm.connectAttr(master_chain.root.mid_twist_out,
                                   self.mid_twist_in_att)
                    pm.connectAttr(master_chain.root.tip_twist_out,
                                   self.tip_twist_in_att)
                    pm.connectAttr(master_chain.root.mid_wide_out,
                                   self.mid_wide_in_att)
                    pm.connectAttr(master_chain.root.tip_wide_out,
                                   self.tip_wide_in_att)
                    pm.connectAttr(master_chain.root.mid_depth_out,
                                   self.mid_depth_in_att)
                    pm.connectAttr(master_chain.root.tip_depth_out,
                                   self.tip_depth_in_att)
        # connect the fk chain ctls
        for e, ctl in enumerate(self.fk_ctl):
            # connect out
            out_loc = self.fk_local_out[e]
            applyop.gear_mulmatrix_op(ctl.attr("worldMatrix"),
                                      out_loc.attr("parentInverseMatrix[0]"),
                                      out_loc)
            out_glob = self.fk_global_out[e]
            out_ref = self.fk_global_ref[e]
            applyop.gear_mulmatrix_op(out_ref.attr("worldMatrix"),
                                      out_glob.attr("parentInverseMatrix[0]"),
                                      out_glob)
            # connect in global
            if mstr_global:
                self.connect_master(mstr_global.fk_global_out,
                                    self.fk_global_in, e,
                                    self.settings["cnxOffset"])

            # connect in local
            if mstr_local:
                self.connect_master(mstr_local.fk_local_out, self.fk_local_in,
                                    e, self.settings["cnxOffset"])

            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        if self.settings["extraTweak"]:
            for tweak_ctl in self.extratweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))
    def addFkOperator(self, i, rootWorld_node, crv_node):

        if i == 0 and self.settings["isSplitHip"]:
            s = self.fk_hip_ctl
            d = self.fk_local_npo[0],
            # maintainOffset, skipRotate, skipTranslate
            _ = pm.parentConstraint(s, d, mo=True, sr=("x", "y", "z"), st=())

            s = self.ik_global_out[0]
            d = self.hip_fk_local_in,
            # maintainOffset, skipRotate, skipTranslate
            pm.parentConstraint(s, d, mo=True)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 1000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                if self.settings["isSplitHip"] and i == 0:
                    u = (i + 1) / (len(self.guide.apos) - 1.0)
                    ratio = u / uv * .5

                else:
                    ratio = u / uv

                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]
            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        pm.connectAttr(self.st_att[i], op + ".stretch")
        pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        else:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.div_cns_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):
            aim = pm.aimConstraint(self.div_cns_npo[i + 1], self.div_cns_npo[i], maintainOffset=False)
            pm.setAttr(aim + ".aimVectorX", 0)
            pm.setAttr(aim + ".aimVectorY", 1)
            pm.setAttr(aim + ".aimVectorZ", 0)
            pm.setAttr(aim + ".upVectorX", 0)
            pm.setAttr(aim + ".upVectorY", 1)
            pm.setAttr(aim + ".upVectorZ", 0)
예제 #7
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
        if self.settings["keepLength"]:
            arclen_node = pm.arclen(self.mst_crv, ch=True)
            alAttr = pm.getAttr(arclen_node + ".arcLength")
            ration_node = node.createMulNode(self.length_ratio_att, alAttr)

            pm.addAttr(self.mst_crv, ln="length_ratio", k=True, w=True)
            node.createDivNode(arclen_node.arcLength, ration_node.outputX,
                               self.mst_crv.length_ratio)

            div_node_scl = node.createDivNode(self.mst_crv.length_ratio,
                                              dm_node_scl.outputScaleX)

        step = 1.000 / (self.def_number - 1)
        u = 0.000
        for i in range(self.def_number):
            cnsUpv = applyop.pathCns(self.upv_cns[i],
                                     self.upv_crv,
                                     cnsType=False,
                                     u=u,
                                     tangent=False)

            cns = applyop.pathCns(self.div_cns[i], self.mst_crv, False, u,
                                  True)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            if self.settings["keepLength"]:

                div_node2 = node.createDivNode(u, div_node_scl.outputX)

                cond_node = node.createConditionNode(div_node2.input1X,
                                                     div_node2.outputX, 4,
                                                     div_node2.input1X,
                                                     div_node2.outputX)

                pm.connectAttr(cond_node + ".outColorR", cnsUpv + ".uValue")
                pm.connectAttr(cond_node + ".outColorR", cns + ".uValue")

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        if self.settings["keepLength"]:
            # add the safty distance offset
            self.tweakTip_npo.attr("tx").set(self.off_dist)
            # connect vis line ref
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))
        for ctl in self.fk_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))

        if self.settings["extraTweak"]:
            for tweak_ctl in self.extratweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))
예제 #8
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk0_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_roll_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        fkvis2_node = node.createReverseNode(self.blend2_att)
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis2_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # jnt ctl
        for ctl in (self.div_ctls):
            for shp in ctl.getShapes():
                pm.connectAttr(self.jntctl_vis_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "YZX")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_npo]

        o_node = applyop.gear_ikfk2bone_op(out,
                                           self.root,
                                           self.ik_ref,
                                           self.upv_ctl,
                                           self.fk0_mtx,
                                           self.fk1_mtx,
                                           self.fk2_mtx,
                                           self.length0,
                                           self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        pm.connectAttr(self.roll_att, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")
        # update issue on effector scale interpol, disconnect for stability
        pm.disconnectAttr(self.eff_npo.scale)
        # auto upvector -------------------------------------

        if self.negate:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.upv_auv,
                                    self.ik_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.upv_auv,
                                    maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.upv_auv.attr("worldMatrix"),
            self.upv_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(dm_node + ".outputTranslate", pb_node + ".inTranslate2")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate2")
        pm.connectAttr(pb_node + ".outRotate", self.upv_mtx.attr("rotate"))
        pm.connectAttr(pb_node + ".outTranslate",
                       self.upv_mtx.attr("translate"))
        pm.connectAttr(self.auv_att, pb_node + ".weight")

        # fk0 mtx connection
        o_node = applyop.gear_mulmatrix_op(
            self.fk0_roll_ctl.attr("worldMatrix"),
            self.fk0_mtx.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk0_mtx.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk0_mtx.attr("rotate"))
        # fk1 loc connect to fk1 ref @ pos and rot, not scl to avoid shearing
        o_node = applyop.gear_mulmatrix_op(
            self.fk1_ref.attr("worldMatrix"),
            self.fk1_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk1_loc.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate", self.fk1_loc.attr("rotate"))
        # fk1 mtx orient cns to fk1 roll
        pm.connectAttr(self.fk1_roll_ctl.attr("rotate"),
                       self.fk1_mtx.attr("rotate"))
        # fk2_loc position constraint to effector------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_npo.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.fk2_loc.attr("translate"))
        # fk2_loc rotation constraint to bone1 (bugfixed) --------------
        o_node = applyop.gear_mulmatrix_op(
            self.bone1.attr("worldMatrix"),
            self.fk2_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.fk2_loc.attr("rotate"))

        # hand ikfk blending from fk ref to ik ref (serious bugfix)--------
        o_node = applyop.gear_mulmatrix_op(
            self.fk_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pb_node = pm.createNode("pairBlend")
        pb_node.attr("rotInterpolation").set(1)
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", pb_node + ".inRotate1")
        pm.connectAttr(self.blend2_att, pb_node + ".weight")
        pm.connectAttr(pb_node + ".outRotate", self.eff_loc.attr("rotate"))
        o_node = applyop.gear_mulmatrix_op(
            self.ik_ref.attr("worldMatrix"),
            self.eff_loc.attr("parentInverseMatrix"))
        dm_node1 = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node1 + ".inputMatrix")
        pm.connectAttr(dm_node1 + ".outputRotate", pb_node + ".inRotate2")
        # use blendcolors to blend scale
        bc_node = pm.createNode("blendColors")
        pm.connectAttr(self.blend_att, bc_node + ".blender")
        pm.connectAttr(dm_node + ".outputScale", bc_node + ".color2")
        pm.connectAttr(dm_node1 + ".outputScale", bc_node + ".color1")
        pm.connectAttr(bc_node + ".output", self.eff_loc.attr("scale"))

        # Twist references ---------------------------------
        pm.connectAttr(self.mid_ctl.attr("translate"),
                       self.tws1_npo.attr("translate"))
        pm.connectAttr(self.mid_ctl.attr("rotate"),
                       self.tws1_npo.attr("rotate"))
        pm.connectAttr(self.mid_ctl.attr("scale"),
                       self.tws1_npo.attr("scale"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws3_npo.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")

        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws3_npo.attr("translate"))

        pm.connectAttr(dm_node + ".outputRotate",
                       self.tws3_npo.attr("rotate"))

        attribute.setRotOrder(self.tws3_rot, "XYZ")

        # elbow thickness connection
        if self.negate:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [0.5, -0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])
        else:
            o_node = node.createMulNode(
                [self.elbow_thickness_att, self.elbow_thickness_att],
                [-0.5, 0.5, 0],
                [self.tws1_loc + ".translateX", self.tws2_loc + ".translateX"])

        # connect both tws1 and tws2  (mid tws)
        self.tws0_rot.setAttr("sx", .001)
        self.tws3_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness0_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        add_node = node.createAddNode(self.roundness1_att, .001)
        pm.connectAttr(add_node + ".output", self.tws2_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder--use aimconstraint withour uovwctor to solve
        # the stable twist

        if self.negate:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="-xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)
        else:
            o_node = applyop.aimCns(self.tws0_loc,
                                    self.mid_ctl,
                                    axis="xy",
                                    wupType=4,
                                    wupVector=[0, 1, 0],
                                    wupObject=self.tws0_npo,
                                    maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_npo)
        distB_node = node.createDistNode(self.tws1_npo, self.tws3_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        # Divisions ----------------------------------------
        # div mid constraint to mid ctl
        o_node = applyop.gear_mulmatrix_op(
            self.mid_ctl.attr("worldMatrix"),
            self.div_mid.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.div_mid.attr("translate"))
        pm.connectAttr(dm_node + ".outputRotate",
                       self.div_mid.attr("rotate"))

        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        # linear scaling percentage (1) to effector (2) to elbow
        scl_1_perc = []
        scl_2_perc = []

        for i, div_cnsUp in enumerate(self.div_cnsUp):

            if i < (self.settings["div0"] + 1):
                perc = i / (self.settings["div0"] + 1.0)
            elif i < (self.settings["div0"] + 2):
                perc = .95

            perc = max(.001, min(.99, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws1_rot, self.tws0_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsUp, [self.tws0_rot, self.tws1_rot], perc, 20)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2)
            scl_2_perc.append(perc)
        scl_1_perc.append(0.5)
        scl_2_perc.append(1)
        for i, div_cnsDn in enumerate(self.div_cnsDn):

            if i == (0):
                perc = .05
            elif i < (self.settings["div1"] + 1):
                perc = i / (self.settings["div1"] + 1.0)
            elif i < (self.settings["div1"] + 2):
                perc = .95

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws3_rot, self.tws2_rot], 1 - perc, 20)

            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cnsDn, [self.tws2_rot, self.tws3_rot], perc, 20)
            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            scl_1_perc.append(perc / 2 + 0.5)
            scl_2_perc.append(1 - perc)
        # Squash n Stretch
        for i, div_cns in enumerate(self.div_cns):
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")
            # get the first mult_node after sq op
            mult_node = pm.listHistory(o_node, future=True)[1]
            # linear blend effector scale
            bc_node = pm.createNode("blendColors")
            bc_node.setAttr("color2R", 1)
            bc_node.setAttr("color2G", 1)
            bc_node.setAttr("blender", scl_1_perc[i])
            pm.connectAttr(self.eff_loc.attr("scale"), bc_node + ".color1")
            # linear blend mid scale
            bc_node2 = pm.createNode("blendColors")
            bc_node2.setAttr("color2R", 1)
            bc_node2.setAttr("color2G", 1)
            bc_node2.setAttr("blender", scl_2_perc[i])
            pm.connectAttr(self.mid_ctl.attr("scale"), bc_node2 + ".color1")
            # mid_ctl scale * effector scale
            mult_node2 = pm.createNode("multiplyDivide")
            pm.connectAttr(bc_node2 + ".output", mult_node2 + ".input1")
            pm.connectAttr(bc_node + ".output", mult_node2 + ".input2")
            # plug to sq scale
            pm.connectAttr(mult_node2 + ".output", mult_node + ".input2")

        # match IK/FK ref
        pm.connectAttr(self.bone0.attr("rotate"),
                       self.match_fk0.attr("rotate"))
        pm.connectAttr(self.bone0.attr("translate"),
                       self.match_fk0.attr("translate"))
        pm.connectAttr(self.bone1.attr("rotate"),
                       self.match_fk1.attr("rotate"))
        pm.connectAttr(self.bone1.attr("translate"),
                       self.match_fk1.attr("translate"))

        return
예제 #9
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Soft condition
        soft_cond_node = node.createConditionNode(
            self.soft_attr,
            0.0001,
            4,
            0.0001,
            self.soft_attr)
        self.soft_attr_cond = soft_cond_node.outColorR

        if self.settings["ikSolver"]:
            self.ikSolver = "ikRPsolver"
        else:
            pm.mel.eval("ikSpringSolver;")
            self.ikSolver = "ikSpringSolver"

        # 1 bone chain Upv ref ===============================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root,
            self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef,
            "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0], self.upv_cns, mo=True)

        # mid joints ================================================
        for xjnt, midJ in zip(self.legBones[1:3],
                              [self.mid1_jnt, self.mid2_jnt]):
            node.createPairBlend(None, xjnt, .5, 1, midJ)
            pm.connectAttr(xjnt + ".translate", midJ + ".translate", f=True)

        pm.parentConstraint(self.mid1_jnt, self.knee_lvl)
        pm.parentConstraint(self.mid2_jnt, self.ankle_lvl)

        # joint length multiply
        multJnt1_node = node.createMulNode(self.boneALenght_attr,
                                           self.boneALenghtMult_attr)
        multJnt2_node = node.createMulNode(self.boneBLenght_attr,
                                           self.boneBLenghtMult_attr)
        multJnt3_node = node.createMulNode(self.boneCLenght_attr,
                                           self.boneCLenghtMult_attr)

        # # IK 3 bones ===============================================

        self.ikHandle = primitive.addIkHandle(self.softblendLoc,
                                              self.getName("ik3BonesHandle"),
                                              self.chain3bones,
                                              self.ikSolver,
                                              self.upv_ctl)

        # TwistTest
        if [round(elem, 4)
                for elem in transform.getTranslation(self.chain3bones[1])] \
                != [round(elem, 4) for elem in self.guide.apos[1]]:
            add_nodeTwist = node.createAddNode(180.0, self.roll_att)
        else:
            add_nodeTwist = node.createAddNode(0, self.roll_att)
        if self.negate:
            mulVal = 1
        else:
            mulVal = -1
        node.createMulNode(
            add_nodeTwist + ".output", mulVal, self.ikHandle.attr("twist"))

        # stable spring solver doble rotation
        pm.pointConstraint(self.root_ctl, self.chain3bones[0])

        # softIK 3 bones operators
        applyop.aimCns(self.aim_tra,
                       self.ik_ref,
                       axis="zx",
                       wupType=4,
                       wupVector=[1, 0, 0],
                       wupObject=self.root_ctl,
                       maintainOffset=False)

        plusTotalLength_node = node.createPlusMinusAverage1D(
            [multJnt1_node.attr("outputX"),
             multJnt2_node.attr("outputX"),
             multJnt3_node.attr("outputX")])

        subtract1_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"), self.soft_attr_cond], 2)

        distance1_node = node.createDistNode(self.ik_ref, self.aim_tra)
        div1_node = node.createDivNode(1.0, self.rig.global_ctl + ".sx")
        mult1_node = node.createMulNode(distance1_node + ".distance",
                                        div1_node + ".outputX")
        subtract2_node = node.createPlusMinusAverage1D(
            [mult1_node.attr("outputX"), subtract1_node.attr("output1D")], 2)
        div2_node = node.createDivNode(subtract2_node + ".output1D",
                                       self.soft_attr_cond)
        mult2_node = node.createMulNode(-1, div2_node + ".outputX")
        power_node = node.createPowNode(self.softSpeed_attr,
                                        mult2_node + ".outputX")
        mult3_node = node.createMulNode(self.soft_attr_cond,
                                        power_node + ".outputX")
        subtract3_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"),
             mult3_node.attr("outputX")],
            2)

        cond1_node = node.createConditionNode(
            self.soft_attr_cond,
            0,
            2,
            subtract3_node + ".output1D",
            plusTotalLength_node + ".output1D")

        cond2_node = node.createConditionNode(mult1_node + ".outputX",
                                              subtract1_node + ".output1D",
                                              2, cond1_node + ".outColorR",
                                              mult1_node + ".outputX")

        pm.connectAttr(cond2_node + ".outColorR", self.wristSoftIK + ".tz")

        # soft blend
        pc_node = pm.pointConstraint(self.wristSoftIK,
                                     self.ik_ref,
                                     self.softblendLoc)
        node.createReverseNode(self.stretch_attr,
                               pc_node + ".target[0].targetWeight")
        pm.connectAttr(self.stretch_attr,
                       pc_node + ".target[1].targetWeight",
                       f=True)

        # Stretch
        distance2_node = node.createDistNode(self.softblendLoc,
                                             self.wristSoftIK)
        mult4_node = node.createMulNode(distance2_node + ".distance",
                                        div1_node + ".outputX")

        # bones
        for i, mulNode in enumerate([multJnt1_node,
                                     multJnt2_node,
                                     multJnt3_node]):

            div3_node = node.createDivNode(mulNode + ".outputX",
                                           plusTotalLength_node + ".output1D")

            mult5_node = node.createMulNode(mult4_node + ".outputX",
                                            div3_node + ".outputX")

            mult6_node = node.createMulNode(self.stretch_attr,
                                            mult5_node + ".outputX")

            node.createPlusMinusAverage1D(
                [mulNode.attr("outputX"), mult6_node.attr("outputX")],
                1,
                self.chain3bones[i + 1] + ".tx")

        # IK 2 bones ===============================================

        self.ikHandle2 = primitive.addIkHandle(self.softblendLoc2,
                                               self.getName("ik2BonesHandle"),
                                               self.chain2bones,
                                               self.ikSolver,
                                               self.upv_ctl)

        node.createMulNode(self.roll_att, mulVal, self.ikHandle2.attr("twist"))

        # stable spring solver doble rotation
        pm.pointConstraint(self.root_ctl, self.chain2bones[0])

        parentc_node = pm.parentConstraint(
            self.ik2b_ikCtl_ref, self.ik2b_bone_ref, self.ik2b_blend)

        node.createReverseNode(self.fullIK_attr,
                               parentc_node + ".target[0].targetWeight")

        pm.connectAttr(self.fullIK_attr,
                       parentc_node + ".target[1].targetWeight", f=True)

        # softIK 2 bones operators
        applyop.aimCns(self.aim_tra2,
                       self.ik2b_ik_ref,
                       axis="zx",
                       wupType=4,
                       wupVector=[1, 0, 0],
                       wupObject=self.root_ctl,
                       maintainOffset=False)

        plusTotalLength_node = node.createPlusMinusAverage1D(
            [multJnt1_node.attr("outputX"), multJnt2_node.attr("outputX")])

        subtract1_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"), self.soft_attr_cond], 2)

        distance1_node = node.createDistNode(self.ik2b_ik_ref, self.aim_tra2)
        div1_node = node.createDivNode(1, self.rig.global_ctl + ".sx")

        mult1_node = node.createMulNode(distance1_node + ".distance",
                                        div1_node + ".outputX")

        subtract2_node = node.createPlusMinusAverage1D(
            [mult1_node.attr("outputX"), subtract1_node.attr("output1D")], 2)

        div2_node = node.createDivNode(subtract2_node + ".output1D",
                                       self.soft_attr_cond)

        mult2_node = node.createMulNode(-1, div2_node + ".outputX")

        power_node = node.createPowNode(self.softSpeed_attr,
                                        mult2_node + ".outputX")

        mult3_node = node.createMulNode(self.soft_attr_cond,
                                        power_node + ".outputX")

        subtract3_node = node.createPlusMinusAverage1D(
            [plusTotalLength_node.attr("output1D"),
             mult3_node.attr("outputX")],
            2)

        cond1_node = node.createConditionNode(
            self.soft_attr_cond,
            0,
            2,
            subtract3_node + ".output1D",
            plusTotalLength_node + ".output1D")

        cond2_node = node.createConditionNode(mult1_node + ".outputX",
                                              subtract1_node + ".output1D",
                                              2,
                                              cond1_node + ".outColorR",
                                              mult1_node + ".outputX")

        pm.connectAttr(cond2_node + ".outColorR", self.ankleSoftIK + ".tz")

        # soft blend
        pc_node = pm.pointConstraint(self.ankleSoftIK,
                                     self.ik2b_ik_ref,
                                     self.softblendLoc2)
        node.createReverseNode(self.stretch_attr,
                               pc_node + ".target[0].targetWeight")
        pm.connectAttr(self.stretch_attr,
                       pc_node + ".target[1].targetWeight",
                       f=True)

        # Stretch
        distance2_node = node.createDistNode(self.softblendLoc2,
                                             self.ankleSoftIK)

        mult4_node = node.createMulNode(distance2_node + ".distance",
                                        div1_node + ".outputX")

        for i, mulNode in enumerate([multJnt1_node, multJnt2_node]):
            div3_node = node.createDivNode(mulNode + ".outputX",
                                           plusTotalLength_node + ".output1D")

            mult5_node = node.createMulNode(mult4_node + ".outputX",
                                            div3_node + ".outputX")

            mult6_node = node.createMulNode(self.stretch_attr,
                                            mult5_node + ".outputX")

            node.createPlusMinusAverage1D([mulNode.attr("outputX"),
                                           mult6_node.attr("outputX")],
                                          1,
                                          self.chain2bones[i + 1] + ".tx")

        # IK/FK connections

        for i, x in enumerate(self.fk_ctl):
            pm.parentConstraint(x, self.legBonesFK[i], mo=True)

        for i, x in enumerate([self.chain2bones[0], self.chain2bones[1]]):
            pm.parentConstraint(x, self.legBonesIK[i], mo=True)

        pm.pointConstraint(self.ik2b_ik_ref, self.legBonesIK[2])
        applyop.aimCns(self.legBonesIK[2],
                       self.roll_ctl,
                       axis="xy",
                       wupType=4,
                       wupVector=[0, 1, 0],
                       wupObject=self.legBonesIK[1],
                       maintainOffset=False)

        pm.connectAttr(self.chain3bones[-1].attr("tx"),
                       self.legBonesIK[-1].attr("tx"))
        # foot twist roll
        pm.orientConstraint(self.ik_ref, self.legBonesIK[-1], mo=True)

        node.createMulNode(
            -1, self.chain3bones[-1].attr("tx"), self.ik2b_ik_ref.attr("tx"))

        for i, x in enumerate(self.legBones):
            node.createPairBlend(
                self.legBonesFK[i], self.legBonesIK[i], self.blend_att, 1, x)

        # Twist references ----------------------------------------

        self.ikhArmRef, self.tmpCrv = applyop.splineIK(
            self.getName("legRollRef"),
            self.rollRef,
            parent=self.root,
            cParent=self.legBones[0])

        initRound = .001
        multVal = 1

        multTangent_node = node.createMulNode(self.roundnessKnee_att, multVal)
        add_node = node.createAddNode(multTangent_node + ".outputX", initRound)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))
        for x in ["translate"]:
            pm.connectAttr(self.knee_ctl.attr(x), self.tws1_loc.attr(x))
        for x in "xy":
            pm.connectAttr(self.knee_ctl.attr("r" + x),
                           self.tws1_loc.attr("r" + x))

        multTangent_node = node.createMulNode(self.roundnessAnkle_att, multVal)
        add_node = node.createAddNode(multTangent_node + ".outputX", initRound)
        pm.connectAttr(add_node + ".output", self.tws2_rot.attr("sx"))
        for x in ["translate"]:
            pm.connectAttr(self.ankle_ctl.attr(x), self.tws2_loc.attr(x))
        for x in "xy":
            pm.connectAttr(self.ankle_ctl.attr("r" + x),
                           self.tws2_loc.attr("r" + x))

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        distC_node = node.createDistNode(self.tws2_loc, self.tws3_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        add_node2 = node.createAddNode(distC_node + ".distance",
                                       add_node + ".output")
        div_node = node.createDivNode(add_node2 + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling
        dm_node = node.createDecomposeMatrixNode(self.root.attr("worldMatrix"))

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        # Flip Offset ----------------------------------------
        pm.connectAttr(self.ankleFlipOffset_att, self.tws2_loc.attr("rz"))
        pm.connectAttr(self.kneeFlipOffset_att, self.tws1_loc.attr("rz"))
        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            subdiv = False
            if i == len(self.div_cns) - 1 or i == 0:
                subdiv = 45
            else:
                subdiv = 45

            if i < (self.settings["div0"] + 1):
                perc = i * .333 / (self.settings["div0"] + 1.0)

            elif i < (self.settings["div0"] + self.settings["div1"] + 2):
                perc = i * .333 / (self.settings["div0"] + 1.0)
            else:
                perc = (.5
                        + (i - self.settings["div0"] - 3.0)
                        * .5
                        / (self.settings["div1"] + 1.0))

            if i < (self.settings["div0"] + 2):
                perc = i * .333 / (self.settings["div0"] + 1.0)

            elif i < (self.settings["div0"] + self.settings["div1"] + 3):
                perc = (.333
                        + (i - self.settings["div0"] - 1)
                        * .333
                        / (self.settings["div1"] + 1.0))
            else:
                perc = (.666
                        + (i
                            - self.settings["div1"]
                            - self.settings["div0"]
                            - 2.0)
                        * .333
                        / (self.settings["div2"] + 1.0))

            # we neet to offset the ankle and knee point to force the bone
            # orientation to the nex bone span
            if perc == .333:
                perc = .3338
            elif perc == .666:
                perc = .6669

            perc = max(.001, min(.999, perc))

            # Roll
            cts = [self.tws0_rot, self.tws1_rot, self.tws2_rot, self.tws3_rot]
            o_node = applyop.gear_rollsplinekine_op(div_cns, cts, perc, subdiv)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None,
                pm.getAttr(self.volDriver_att),
                "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)
        for ctrl in self.fk_ctl:
            for shp in ctrl.getShapes():
                pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        # ik
        for ctrl in [self.ik_ctl, self.roll_ctl, self.upv_ctl, self.line_ref]:
            for shp in ctrl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # setup leg o_node scale compensate
        pm.connectAttr(self.rig.global_ctl + ".scale", self.setup + ".scale")

        # match IK/FK ref
        pm.parentConstraint(self.legBones[0], self.match_fk0_off, mo=True)
        pm.parentConstraint(self.legBones[1], self.match_fk1_off, mo=True)
        pm.parentConstraint(self.legBones[2], self.match_fk2_off, mo=True)

        return
예제 #10
0
    def addFkOperator(self, i, rootWorld_node, crv_node):

        fk_local_npo_xfoms = []
        if i not in [len(self.guide.apos), 0]:
            xform = getTransform(self.fk_local_npo[i])
            fk_local_npo_xfoms.append(xform)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 10000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                roll_a = self.ik_decompose_rot[_i - 1]
                roll_b = self.ik_decompose_rot[_i]

                ratio = (uv - u) * (self.settings["ikNb"] - 1)
                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]

            roll_a = self.ik_decompose_rot[-2]
            roll_b = self.ik_decompose_rot[-1]

            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        # pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # rotationdriver
        roll_ratio = (i + 1.00) / len(self.fk_ctl)
        mul1 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_a.attr("outRoll"), mul1.attr("input1"))
        pm.setAttr(mul1.attr("input2"), ratio)

        mul2 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_b.attr("outRoll"), mul2.attr("input1"))
        pm.setAttr(mul2.attr("input2"), (1. - ratio))

        add = pm.createNode("addDoubleLinear")
        pm.connectAttr(mul1.attr("output"), add.attr("input1"))
        pm.connectAttr(mul2.attr("output"), add.attr("input2"))

        compose_rot = pm.createNode("composeRotate")
        pm.setAttr(compose_rot.attr("axisOrientX"), 90.0)
        pm.setAttr(compose_rot.attr("axisOrientZ"), 90.0)
        pm.connectAttr(add.attr("output"), compose_rot.attr("roll"))
        pm.connectAttr(compose_rot.attr("outRotate"), self.div_roll_npo[i].attr("rotate"))

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        # pm.connectAttr(self.st_att[i], op + ".stretch")
        # pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        elif i != len(self.guide.apos) - 1:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.div_roll_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        else:
            pass

        if i == len(self.guide.apos) - 1:
            # pm.connectAttr(dm_node + ".outputRotate", self.fk_local_npo2.attr("r"))
            _ = pm.parentConstraint(self.ik_ctl[-1],
                                    self.fk_local_npo2,
                                    skipTranslate=("x", "y", "z"),
                                    maintainOffset=True)
        else:
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        # self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):

            if self.negate:
                aim = (0., 1., 0.)
                upv = (0., 0., 1.)
            else:
                aim = (0., -1., 0.)
                upv = (0., 0., -1.)

            pm.aimConstraint(self.div_cns_npo[i + 1],
                             self.div_cns_npo[i],
                             mo=True,
                             worldUpType="object",
                             worldUpObject=self.fk_upvectors[i],
                             worldUpVector=(0., 1., 0.),
                             aimVector=aim,
                             upVector=upv,
                             )
예제 #11
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(
            self.slv_crv, self.mst_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        op = applyop.gear_curveslide2_op(
            self.slv_upv_crv, self.upv_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        for tang in self.tangentsCtl:
            for shp in tang.getShapes():
                pm.connectAttr(self.tangentsVis_att, shp.attr("visibility"))

        for twnpo, fkctl in zip(self.tweak_npo, self.fk_ctl):
            intMatrix = applyop.gear_intmatrix_op(
                fkctl.attr("worldMatrix"),
                fkctl.getParent().attr("worldMatrix"),
                .5)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      twnpo.attr("parentInverseMatrix[0]"),
                                      twnpo)

        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
        if self.settings["keepLength"]:
            arclen_node = pm.arclen(self.slv_crv, ch=True)
            alAttr = pm.getAttr(arclen_node + ".arcLength")

            pm.addAttr(self.slv_crv, ln="length_ratio", k=True, w=True)
            node.createDivNode(arclen_node.arcLength,
                               alAttr,
                               self.slv_crv.length_ratio)

            div_node_scl = node.createDivNode(self.slv_crv.length_ratio,
                                              dm_node_scl.outputScaleX)

        step = 1.000 / (self.def_number - 1)
        u = 0.000
        for i in range(self.def_number):
            mult_node = node.createMulNode(u, self.lenght_att)
            cnsUpv = applyop.pathCns(self.upv_cns[i],
                                     self.slv_upv_crv,
                                     cnsType=False,
                                     u=u,
                                     tangent=False)
            pm.connectAttr(mult_node.outputX, cnsUpv.uValue)

            cns = applyop.pathCns(
                self.div_cns[i], self.slv_crv, False, u, True)
            pm.connectAttr(mult_node.outputX, cns.uValue)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            if self.settings["keepLength"]:

                div_node2 = node.createDivNode(u, div_node_scl.outputX)

                cond_node = node.createConditionNode(div_node2.input1X,
                                                     div_node2.outputX,
                                                     4,
                                                     div_node2.input1X,
                                                     div_node2.outputX)

                # pm.connectAttr(cond_node + ".outColorR",
                #                cnsUpv + ".uValue")
                # pm.connectAttr(cond_node + ".outColorR",
                #                cns + ".uValue")
                pm.connectAttr(cond_node + ".outColorR",
                               mult_node + ".input1X", f=True)

            # Connect the scaling for self.Extra_tweak_npo
            et_npo = self.Extra_tweak_npo[i]
            pm.connectAttr(self.spin_att, et_npo + ".rz")

            base_node = node.createMulNode(self.baseSize_att, 1.00000 - u, output=None)
            tip_node = node.createMulNode(self.tipSize_att, u, output=None)
            sum_node = node.createPlusMinusAverage1D([base_node.outputX, tip_node.outputX])
            # print et_npo
            pm.connectAttr(sum_node.output1D, et_npo.scaleX, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleY, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleZ, f=True)

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        for et in self.Extra_tweak_ctl:
            for shp in et.getShapes():
                pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        if self.settings["keepLength"]:
            # add the safty distance offset
            self.tweakTip_npo.attr("tx").set(self.off_dist)
            # connect vis line ref
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))
        for ctl in self.fk_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))
예제 #12
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Division -----------------------------------------
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        for i in range(self.settings["fkNb"]):

            # References
            u = i / (self.settings["fkNb"] - 1.0)
            if i == 0:  # we add extra 10% to the first position
                u = (1.0 / (self.settings["fkNb"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 0)  # front axis is 'X'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik_ctl[0] + ".worldMatrix",
                self.ik_ctl[-1] + ".worldMatrix", u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[0] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["fkNb"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[-1] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")
예제 #13
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

        # Connections (Hooks) ------------------------------
        pm.pointConstraint(self.scl_transforms[0], self.cnx0)
        pm.scaleConstraint(self.scl_transforms[0], self.cnx0)
        pm.orientConstraint(self.ik0_ctl, self.cnx0)
        pm.pointConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
        pm.orientConstraint(self.ik1_ctl, self.cnx1)
예제 #14
0
def rig(
    eyeMesh=None,
    edgeLoop="",
    blinkH=20,
    namePrefix="eye",
    offset=0.05,
    rigidLoops=2,
    falloffLoops=4,
    headJnt=None,
    doSkin=True,
    parent_node=None,
    ctlName="ctl",
    sideRange=False,
    customCorner=False,
    intCorner=None,
    extCorner=None,
    ctlSet=None,
    defSet=None,
    upperVTrack=0.02,
    upperHTrack=0.01,
    lowerVTrack=0.02,
    lowerHTrack=0.01,
    aim_controller="",
    deformers_group="",
    everyNVertex=1,
):
    """Create eyelid and eye rig

    Args:
        eyeMesh (TYPE): Description
        edgeLoop (TYPE): Description
        blinkH (TYPE): Description
        namePrefix (TYPE): Description
        offset (TYPE): Description
        rigidLoops (TYPE): Description
        falloffLoops (TYPE): Description
        headJnt (TYPE): Description
        doSkin (TYPE): Description
        parent_node (None, optional): Description
        ctlName (str, optional): Description
        sideRange (bool, optional): Description
        customCorner (bool, optional): Description
        intCorner (None, optional): Description
        extCorner (None, optional): Description
        ctlSet (None, optional): Description
        defSet (None, optional): Description
        upperVTrack (None, optional): Description
        upperHTrack (None, optional): Description
        lowerVTrack (None, optional): Description
        lowerHTrack (None, optional): Description
        aim_controller (None, optional): Description
        deformers_group (None, optional): Description
        everyNVertex (int, optional): Will create a joint every N vertex

    No Longer Returned:
        TYPE: Description
    """

    ##########################################
    # INITIAL SETUP
    ##########################################
    up_axis = pm.upAxis(q=True, axis=True)
    if up_axis == "z":
        z_up = True
    else:
        z_up = False

    # getters
    edgeLoopList = get_edge_loop(edgeLoop)
    eyeMesh = get_eye_mesh(eyeMesh)

    # checkers
    if not edgeLoopList or not eyeMesh:
        return
    if doSkin:
        if not headJnt:
            pm.displayWarning("Please set the Head Jnt or unCheck "
                              "Compute Topological Autoskin")
            return

    # Convert data
    blinkH = blinkH / 100.0

    # Initial Data
    bboxCenter = meshNavigation.bboxCenter(eyeMesh)

    extr_v = meshNavigation.getExtremeVertexFromLoop(edgeLoopList, sideRange,
                                                     z_up)
    upPos = extr_v[0]
    lowPos = extr_v[1]
    inPos = extr_v[2]
    outPos = extr_v[3]
    edgeList = extr_v[4]
    vertexList = extr_v[5]

    # Detect the side L or R from the x value
    if inPos.getPosition(space="world")[0] < 0.0:
        side = "R"
        inPos = extr_v[3]
        outPos = extr_v[2]
        normalPos = outPos
        npw = normalPos.getPosition(space="world")
        normalVec = npw - bboxCenter
    else:
        side = "L"
        normalPos = outPos
        npw = normalPos.getPosition(space="world")
        normalVec = bboxCenter - npw

    # Manual Vertex corners
    if customCorner:
        if intCorner:
            try:
                if side == "R":
                    inPos = pm.PyNode(extCorner)
                else:
                    inPos = pm.PyNode(intCorner)
            except pm.MayaNodeError:
                pm.displayWarning("%s can not be found" % intCorner)
                return
        else:
            pm.displayWarning("Please set the internal eyelid corner")
            return

        if extCorner:
            try:
                normalPos = pm.PyNode(extCorner)
                npw = normalPos.getPosition(space="world")
                if side == "R":
                    outPos = pm.PyNode(intCorner)
                    normalVec = npw - bboxCenter
                else:
                    outPos = pm.PyNode(extCorner)
                    normalVec = bboxCenter - npw
            except pm.MayaNodeError:
                pm.displayWarning("%s can not be found" % extCorner)
                return
        else:
            pm.displayWarning("Please set the external eyelid corner")
            return

    # Check if we have prefix:
    if namePrefix:
        namePrefix = string.removeInvalidCharacter(namePrefix)
    else:
        pm.displayWarning("Prefix is needed")
        return

    def setName(name, ind=None):
        namesList = [namePrefix, side, name]
        if ind is not None:
            namesList[1] = side + str(ind)
        name = "_".join(namesList)
        return name

    if pm.ls(setName("root")):
        pm.displayWarning("The object %s already exist in the scene. Please "
                          "choose another name prefix" % setName("root"))
        return

    ##########################################
    # CREATE OBJECTS
    ##########################################

    # Eye root
    eye_root = primitive.addTransform(None, setName("root"))
    eyeCrv_root = primitive.addTransform(eye_root, setName("crvs"))

    # Eyelid Main crvs
    try:
        upEyelid_edge = meshNavigation.edgeRangeInLoopFromMid(
            edgeList, upPos, inPos, outPos)
        up_crv = curve.createCurveFromOrderedEdges(upEyelid_edge,
                                                   inPos,
                                                   setName("upperEyelid"),
                                                   parent=eyeCrv_root)
        upCtl_crv = curve.createCurveFromOrderedEdges(upEyelid_edge,
                                                      inPos,
                                                      setName("upCtl_crv"),
                                                      parent=eyeCrv_root)
        pm.rebuildCurve(upCtl_crv, s=2, rt=0, rpo=True, ch=False)

        lowEyelid_edge = meshNavigation.edgeRangeInLoopFromMid(
            edgeList, lowPos, inPos, outPos)
        low_crv = curve.createCurveFromOrderedEdges(lowEyelid_edge,
                                                    inPos,
                                                    setName("lowerEyelid"),
                                                    parent=eyeCrv_root)
        lowCtl_crv = curve.createCurveFromOrderedEdges(lowEyelid_edge,
                                                       inPos,
                                                       setName("lowCtl_crv"),
                                                       parent=eyeCrv_root)

        pm.rebuildCurve(lowCtl_crv, s=2, rt=0, rpo=True, ch=False)

    except UnboundLocalError:
        if customCorner:
            pm.displayWarning("This error is maybe caused because the custom "
                              "Corner vertex is not part of the edge loop")
        pm.displayError(traceback.format_exc())
        return

    # blendshape  curves. All crv have 30 point to allow blendshape connect
    upDriver_crv = curve.createCurveFromCurve(up_crv,
                                              setName("upDriver_crv"),
                                              nbPoints=30,
                                              parent=eyeCrv_root)
    upDriver_crv.attr("lineWidth").set(5)
    lowDriver_crv = curve.createCurveFromCurve(low_crv,
                                               setName("lowDriver_crv"),
                                               nbPoints=30,
                                               parent=eyeCrv_root)
    lowDriver_crv.attr("lineWidth").set(5)

    upRest_target_crv = curve.createCurveFromCurve(
        up_crv, setName("upRest_target_crv"), nbPoints=30, parent=eyeCrv_root)
    lowRest_target_crv = curve.createCurveFromCurve(
        low_crv,
        setName("lowRest_target_crv"),
        nbPoints=30,
        parent=eyeCrv_root)
    upProfile_target_crv = curve.createCurveFromCurve(
        up_crv,
        setName("upProfile_target_crv"),
        nbPoints=30,
        parent=eyeCrv_root,
    )
    lowProfile_target_crv = curve.createCurveFromCurve(
        low_crv,
        setName("lowProfile_target_crv"),
        nbPoints=30,
        parent=eyeCrv_root,
    )

    # mid driver
    midUpDriver_crv = curve.createCurveFromCurve(up_crv,
                                                 setName("midUpDriver_crv"),
                                                 nbPoints=30,
                                                 parent=eyeCrv_root)
    midLowDriver_crv = curve.createCurveFromCurve(low_crv,
                                                  setName("midLowDriver_crv"),
                                                  nbPoints=30,
                                                  parent=eyeCrv_root)

    # curve that define the close point of the eyelid
    closeTarget_crv = curve.createCurveFromCurve(up_crv,
                                                 setName("closeTarget_crv"),
                                                 nbPoints=30,
                                                 parent=eyeCrv_root)

    eyeCrv_root.attr("visibility").set(False)

    # localBBOX
    localBBox = eyeMesh.getBoundingBox(invisible=True, space="world")
    wRadius = abs((localBBox[0][0] - localBBox[1][0]))
    dRadius = abs((localBBox[0][1] - localBBox[1][1]) / 1.7)

    # Groups
    if not ctlSet:
        ctlSet = "rig_controllers_grp"
    try:
        ctlSet = pm.PyNode(ctlSet)
    except pm.MayaNodeError:
        pm.sets(n=ctlSet, em=True)
        ctlSet = pm.PyNode(ctlSet)
    if not defSet:
        defSet = "rig_deformers_grp"
    try:
        defset = pm.PyNode(defSet)
    except pm.MayaNodeError:
        pm.sets(n=defSet, em=True)
        defset = pm.PyNode(defSet)

    # Calculate center looking at
    averagePosition = (upPos.getPosition(space="world") + lowPos.getPosition(
        space="world") + inPos.getPosition(space="world") +
                       outPos.getPosition(space="world")) / 4

    if z_up:
        axis = "zx"
    else:
        axis = "z-x"
    t = transform.getTransformLookingAt(bboxCenter,
                                        averagePosition,
                                        normalVec,
                                        axis=axis,
                                        negate=False)

    over_npo = primitive.addTransform(eye_root, setName("center_lookatRoot"),
                                      t)

    center_lookat = primitive.addTransform(over_npo, setName("center_lookat"),
                                           t)

    if side == "R":
        over_npo.attr("rx").set(over_npo.attr("rx").get() * -1)
        over_npo.attr("ry").set(over_npo.attr("ry").get() + 180)
        over_npo.attr("sz").set(-1)
    t = transform.getTransform(over_npo)

    # Tracking
    # Eye aim control
    t_arrow = transform.getTransformLookingAt(
        bboxCenter,
        averagePosition,
        upPos.getPosition(space="world"),
        axis="zy",
        negate=False,
    )

    radius = abs((localBBox[0][0] - localBBox[1][0]) / 1.7)

    arrow_ctl = None
    arrow_npo = None
    if aim_controller:
        arrow_ctl = pm.PyNode(aim_controller)
    else:
        arrow_npo = primitive.addTransform(eye_root, setName("aim_npo"),
                                           t_arrow)
        arrow_ctl = icon.create(
            arrow_npo,
            setName("aim_%s" % ctlName),
            t_arrow,
            icon="arrow",
            w=1,
            po=datatypes.Vector(0, 0, radius),
            color=4,
        )
    if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
        pass
    else:
        pm.sets(ctlSet, add=arrow_ctl)
    attribute.setKeyableAttributes(arrow_ctl, params=["rx", "ry", "rz"])
    attribute.addAttribute(arrow_ctl, "isCtl", "bool", keyable=False)

    # tracking custom trigger
    if side == "R":
        tt = t_arrow
    else:
        tt = t
    aimTrigger_root = primitive.addTransform(center_lookat,
                                             setName("aimTrigger_root"), tt)
    # For some unknown reason the right side gets scewed rotation values
    mgear.core.transform.resetTransform(aimTrigger_root)
    aimTrigger_lvl = primitive.addTransform(aimTrigger_root,
                                            setName("aimTrigger_lvl"), tt)
    # For some unknown reason the right side gets scewed rotation values
    mgear.core.transform.resetTransform(aimTrigger_lvl)
    aimTrigger_lvl.attr("tz").set(1.0)
    aimTrigger_ref = primitive.addTransform(aimTrigger_lvl,
                                            setName("aimTrigger_ref"), tt)
    # For some unknown reason the right side gets scewed rotation values
    mgear.core.transform.resetTransform(aimTrigger_ref)
    aimTrigger_ref.attr("tz").set(0.0)
    # connect  trigger with arrow_ctl
    pm.parentConstraint(arrow_ctl, aimTrigger_ref, mo=True)

    # Blink driver controls
    if z_up:
        trigger_axis = "tz"
        ro_up = [0, 1.57079633 * 2, 1.57079633]
        ro_low = [0, 0, 1.57079633]
        po = [0, offset * -1, 0]
        low_pos = 2  # Z
    else:
        trigger_axis = "ty"
        ro_up = (1.57079633, 1.57079633, 0)
        ro_low = [1.57079633, 1.57079633, 1.57079633 * 2]
        po = [0, 0, offset]
        low_pos = 1  # Y

    # upper ctl
    p = upRest_target_crv.getCVs(space="world")[15]
    ut = transform.setMatrixPosition(datatypes.Matrix(), p)
    npo = primitive.addTransform(over_npo, setName("upBlink_npo"), ut)

    up_ctl = icon.create(
        npo,
        setName("upBlink_ctl"),
        ut,
        icon="arrow",
        w=2.5,
        d=2.5,
        ro=datatypes.Vector(ro_up[0], ro_up[1], ro_up[2]),
        po=datatypes.Vector(po[0], po[1], po[2]),
        color=4,
    )
    attribute.setKeyableAttributes(up_ctl, [trigger_axis])
    pm.sets(ctlSet, add=up_ctl)

    # use translation of the object to drive the blink
    blink_driver = primitive.addTransform(up_ctl, setName("blink_drv"), ut)

    # lowe ctl
    p_low = lowRest_target_crv.getCVs(space="world")[15]
    p[low_pos] = p_low[low_pos]
    lt = transform.setMatrixPosition(ut, p)
    npo = primitive.addTransform(over_npo, setName("lowBlink_npo"), lt)

    low_ctl = icon.create(
        npo,
        setName("lowBlink_ctl"),
        lt,
        icon="arrow",
        w=1.5,
        d=1.5,
        ro=datatypes.Vector(ro_low[0], ro_low[1], ro_low[2]),
        po=datatypes.Vector(po[0], po[1], po[2]),
        color=4,
    )
    attribute.setKeyableAttributes(low_ctl, [trigger_axis])
    pm.sets(ctlSet, add=low_ctl)

    # Controls lists
    upControls = []
    trackLvl = []
    track_corner_lvl = []
    corner_ctl = []
    ghost_ctl = []

    # upper eyelid controls
    upperCtlNames = ["inCorner", "upInMid", "upMid", "upOutMid", "outCorner"]
    cvs = upCtl_crv.getCVs(space="world")
    if side == "R" and not sideRange:
        # if side == "R":
        cvs = [cv for cv in reversed(cvs)]
        # offset = offset * -1
    for i, cv in enumerate(cvs):
        if utils.is_odd(i):
            color = 14
            wd = 0.3
            icon_shape = "circle"
            params = ["tx", "ty", "tz"]
        else:
            color = 4
            wd = 0.6
            icon_shape = "circle"
            params = [
                "tx",
                "ty",
                "tz",
                "ro",
                "rx",
                "ry",
                "rz",
                "sx",
                "sy",
                "sz",
            ]

        t = transform.setMatrixPosition(t, cvs[i])
        npo = primitive.addTransform(center_lookat,
                                     setName("%s_npo" % upperCtlNames[i]), t)
        npoBase = npo
        # track for corners and mid point level
        if i in [0, 2, 4]:
            # we add an extra level to input the tracking ofset values
            npo = primitive.addTransform(npo,
                                         setName("%s_trk" % upperCtlNames[i]),
                                         t)
            if i == 2:
                trackLvl.append(npo)
            else:
                track_corner_lvl.append(npo)

        if i in [1, 2, 3]:
            ctl = primitive.addTransform(npo,
                                         setName("%s_loc" % upperCtlNames[i]),
                                         t)
            # ghost controls
            if i == 2:
                gt = transform.setMatrixPosition(
                    t, transform.getPositionFromMatrix(ut))
            else:
                gt = t
            npo_g = primitive.addTransform(
                up_ctl, setName("%sCtl_npo" % upperCtlNames[i]), gt)
            ctl_g = icon.create(
                npo_g,
                setName("%s_%s" % (upperCtlNames[i], ctlName)),
                gt,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl_g
            ghost_ctl.append(ctl_g)
            # connect local SRT
            rigbits.connectLocalTransform([ctl_g, ctl])
        else:
            ctl = icon.create(
                npo,
                setName("%s_%s" % (upperCtlNames[i], ctlName)),
                t,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl
        attribute.addAttribute(ctl_param, "isCtl", "bool", keyable=False)
        attribute.add_mirror_config_channels(ctl_param)
        node.add_controller_tag(ctl_param, over_npo)
        if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl_param)
        attribute.setKeyableAttributes(ctl_param, params)
        upControls.append(ctl)
        # add corner ctls to corner ctl list for tracking
        if i in [0, 4]:
            corner_ctl.append(ctl)
        # if side == "R":
        #     npoBase.attr("ry").set(180)
        #     npoBase.attr("sz").set(-1)
    # adding parent constraints to odd controls
    for i, ctl in enumerate(upControls):
        if utils.is_odd(i):
            cns_node = pm.parentConstraint(upControls[i - 1],
                                           upControls[i + 1],
                                           ctl.getParent(),
                                           mo=True)
            # Make the constraint "noFlip"
            cns_node.interpType.set(0)

    # adding parent constraint ghost controls
    cns_node = pm.parentConstraint(ghost_ctl[1],
                                   upControls[0],
                                   ghost_ctl[0].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    cns_node = pm.parentConstraint(ghost_ctl[1],
                                   upControls[-1],
                                   ghost_ctl[2].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    # lower eyelid controls
    lowControls = [upControls[0]]
    lowerCtlNames = [
        "inCorner",
        "lowInMid",
        "lowMid",
        "lowOutMid",
        "outCorner",
    ]

    cvs = lowCtl_crv.getCVs(space="world")
    if side == "R" and not sideRange:
        cvs = [cv for cv in reversed(cvs)]
    for i, cv in enumerate(cvs):
        # we skip the first and last point since is already in the uper eyelid
        if i in [0, 4]:
            continue
        if utils.is_odd(i):
            color = 14
            wd = 0.3
            icon_shape = "circle"
            params = ["tx", "ty", "tz"]
        else:
            color = 4
            wd = 0.6
            icon_shape = "circle"
            params = [
                "tx",
                "ty",
                "tz",
                "ro",
                "rx",
                "ry",
                "rz",
                "sx",
                "sy",
                "sz",
            ]

        t = transform.setMatrixPosition(t, cvs[i])
        npo = primitive.addTransform(center_lookat,
                                     setName("%s_npo" % lowerCtlNames[i]), t)
        npoBase = npo
        if i in [1, 2, 3]:
            if i == 2:
                # we add an extra level to input the tracking ofset values
                npo = primitive.addTransform(
                    npo, setName("%s_trk" % lowerCtlNames[i]), t)
                trackLvl.append(npo)
            ctl = primitive.addTransform(npo,
                                         setName("%s_loc" % lowerCtlNames[i]),
                                         t)
            # ghost controls
            if i == 2:
                gt = transform.setMatrixPosition(
                    t, transform.getPositionFromMatrix(lt))
            else:
                gt = t
            # ghost controls
            npo_g = primitive.addTransform(
                low_ctl, setName("%sCtl_npo" % lowerCtlNames[i]), gt)
            ctl_g = icon.create(
                npo_g,
                setName("%s_%s" % (lowerCtlNames[i], ctlName)),
                gt,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl_g
            ghost_ctl.append(ctl_g)
            # connect local SRT
            rigbits.connectLocalTransform([ctl_g, ctl])
        else:
            ctl = icon.create(
                npo,
                setName("%s_%s" % (lowerCtlNames[i], ctlName)),
                t,
                icon=icon_shape,
                w=wd,
                d=wd,
                ro=datatypes.Vector(1.57079633, 0, 0),
                po=datatypes.Vector(0, 0, offset),
                color=color,
            )
            # define the ctl_param to recive the ctl configuration
            ctl_param = ctl
        attribute.addAttribute(ctl_param, "isCtl", "bool", keyable=False)
        attribute.add_mirror_config_channels(ctl_param)

        lowControls.append(ctl)
        if len(ctlName.split("_")) == 2 and ctlName.split("_")[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl_param)
        attribute.setKeyableAttributes(ctl_param, params)
        # mirror behaviout on R side controls
        # if side == "R":
        #     npoBase.attr("ry").set(180)
        #     npoBase.attr("sz").set(-1)
    for lctl in reversed(lowControls[1:]):
        node.add_controller_tag(lctl, over_npo)
    lowControls.append(upControls[-1])

    # adding parent constraints to odd controls
    for i, ctl in enumerate(lowControls):
        if utils.is_odd(i):
            cns_node = pm.parentConstraint(
                lowControls[i - 1],
                lowControls[i + 1],
                ctl.getParent(),
                mo=True,
            )
            # Make the constraint "noFlip"
            cns_node.interpType.set(0)

    # adding parent constraint ghost controls
    cns_node = pm.parentConstraint(ghost_ctl[4],
                                   upControls[0],
                                   ghost_ctl[3].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    cns_node = pm.parentConstraint(ghost_ctl[4],
                                   upControls[-1],
                                   ghost_ctl[5].getParent(),
                                   mo=True)
    cns_node.interpType.set(0)
    ##########################################
    # OPERATORS
    ##########################################
    # Connecting control crvs with controls
    applyop.gear_curvecns_op(upCtl_crv, upControls)
    applyop.gear_curvecns_op(lowCtl_crv, lowControls)

    # adding wires
    w1 = pm.wire(up_crv, w=upDriver_crv)[0]
    w2 = pm.wire(low_crv, w=lowDriver_crv)[0]

    w3 = pm.wire(upProfile_target_crv, w=upCtl_crv)[0]
    w4 = pm.wire(lowProfile_target_crv, w=lowCtl_crv)[0]

    if z_up:
        trigger_axis = "tz"
    else:
        trigger_axis = "ty"

    # connect blink driver
    pm.pointConstraint(low_ctl, blink_driver, mo=False)
    rest_val = blink_driver.attr(trigger_axis).get()

    up_div_node = node.createDivNode(up_ctl.attr(trigger_axis), rest_val)
    low_div_node = node.createDivNode(low_ctl.attr(trigger_axis),
                                      rest_val * -1)

    # contact driver
    minus_node = node.createPlusMinusAverage1D(
        [rest_val, blink_driver.attr(trigger_axis)], operation=2)
    contact_div_node = node.createDivNode(minus_node.output1D, rest_val)

    # wire tension
    for w in [w1, w2, w3, w4]:
        w.dropoffDistance[0].set(100)

    # TODO: what is the best solution?
    # trigger using proximity
    # remap_node = pm.createNode("remapValue")
    # contact_div_node.outputX >> remap_node.inputValue
    # remap_node.value[0].value_Interp.set(2)
    # remap_node.inputMin.set(0.995)
    # reverse_node = node.createReverseNode(remap_node.outColorR)
    # for w in [w1, w2]:
    #     reverse_node.outputX >> w.scale[0]

    # trigger at starting movement for up and low
    # up
    remap_node = pm.createNode("remapValue")
    up_ctl.attr(trigger_axis) >> remap_node.inputValue
    remap_node.value[0].value_Interp.set(2)
    remap_node.inputMax.set(rest_val / 8)
    reverse_node = node.createReverseNode(remap_node.outColorR)
    reverse_node.outputX >> w1.scale[0]
    # low
    remap_node = pm.createNode("remapValue")
    low_ctl.attr(trigger_axis) >> remap_node.inputValue
    remap_node.value[0].value_Interp.set(2)
    remap_node.inputMin.set((rest_val / 8) * -1)
    remap_node.outColorR >> w2.scale[0]

    # mid position drivers blendshapes
    bs_midUpDrive = pm.blendShape(
        lowRest_target_crv,
        upProfile_target_crv,
        midUpDriver_crv,
        n="midUpDriver_blendShape",
    )

    bs_midLowDrive = pm.blendShape(
        upRest_target_crv,
        lowProfile_target_crv,
        midLowDriver_crv,
        n="midlowDriver_blendShape",
    )

    bs_closeTarget = pm.blendShape(
        midUpDriver_crv,
        midLowDriver_crv,
        closeTarget_crv,
        n="closeTarget_blendShape",
    )

    pm.connectAttr(
        up_div_node.outputX,
        bs_midUpDrive[0].attr(lowRest_target_crv.name()),
    )

    pm.connectAttr(
        low_div_node.outputX,
        bs_midLowDrive[0].attr(upRest_target_crv.name()),
    )

    pm.setAttr(bs_closeTarget[0].attr(midUpDriver_crv.name()), 0.5)
    pm.setAttr(bs_closeTarget[0].attr(midLowDriver_crv.name()), 0.5)

    # Main crv drivers
    bs_upBlink = pm.blendShape(
        lowRest_target_crv,
        closeTarget_crv,
        upProfile_target_crv,
        upDriver_crv,
        n="upBlink_blendShape",
    )
    bs_lowBlink = pm.blendShape(
        upRest_target_crv,
        closeTarget_crv,
        lowProfile_target_crv,
        lowDriver_crv,
        n="lowBlink_blendShape",
    )

    # blink contact connections
    cond_node_up = node.createConditionNode(contact_div_node.outputX, 1, 3, 0,
                                            up_div_node.outputX)
    pm.connectAttr(
        cond_node_up.outColorR,
        bs_upBlink[0].attr(lowRest_target_crv.name()),
    )

    cond_node_low = node.createConditionNode(contact_div_node.outputX, 1, 3, 0,
                                             low_div_node.outputX)
    pm.connectAttr(
        cond_node_low.outColorR,
        bs_lowBlink[0].attr(upRest_target_crv.name()),
    )

    cond_node_close = node.createConditionNode(contact_div_node.outputX, 1, 2,
                                               1, 0)
    cond_node_close.colorIfFalseR.set(0)
    pm.connectAttr(
        cond_node_close.outColorR,
        bs_upBlink[0].attr(closeTarget_crv.name()),
    )

    pm.connectAttr(
        cond_node_close.outColorR,
        bs_lowBlink[0].attr(closeTarget_crv.name()),
    )

    pm.setAttr(bs_upBlink[0].attr(upProfile_target_crv.name()), 1)
    pm.setAttr(bs_lowBlink[0].attr(lowProfile_target_crv.name()), 1)

    # joints root
    jnt_root = primitive.addTransformFromPos(eye_root,
                                             setName("joints"),
                                             pos=bboxCenter)
    if deformers_group:
        deformers_group = pm.PyNode(deformers_group)
        pm.parentConstraint(eye_root, jnt_root, mo=True)
        pm.scaleConstraint(eye_root, jnt_root, mo=True)
        deformers_group.addChild(jnt_root)

    # head joint
    if headJnt:
        try:
            headJnt = pm.PyNode(headJnt)
            jnt_base = headJnt
        except pm.MayaNodeError:
            pm.displayWarning("Aborted can not find %s " % headJnt)
            return
    else:
        # Eye root
        jnt_base = jnt_root

    eyeTargets_root = primitive.addTransform(eye_root, setName("targets"))

    eyeCenter_jnt = rigbits.addJnt(arrow_ctl,
                                   jnt_base,
                                   grp=defset,
                                   jntName=setName("center_jnt"))

    # Upper Eyelid joints ##################################################

    cvs = up_crv.getCVs(space="world")
    upCrv_info = node.createCurveInfoNode(up_crv)

    # aim constrain targets and joints
    upperEyelid_aimTargets = []
    upperEyelid_jnt = []
    upperEyelid_jntRoot = []

    if z_up:
        axis = "zy"
        wupVector = [0, 0, 1]
    else:
        axis = "-yz"
        wupVector = [0, 1, 0]

    for i, cv in enumerate(cvs):
        if i % everyNVertex:
            continue

        # aim targets
        trn = primitive.addTransformFromPos(eyeTargets_root,
                                            setName("upEyelid_aimTarget", i),
                                            pos=cv)
        upperEyelid_aimTargets.append(trn)
        # connecting positions with crv
        pm.connectAttr(upCrv_info + ".controlPoints[%s]" % str(i),
                       trn.attr("translate"))

        # joints
        jntRoot = primitive.addJointFromPos(jnt_root,
                                            setName("upEyelid_jnt_base", i),
                                            pos=bboxCenter)
        jntRoot.attr("radius").set(0.08)
        jntRoot.attr("visibility").set(False)
        upperEyelid_jntRoot.append(jntRoot)
        applyop.aimCns(jntRoot,
                       trn,
                       axis=axis,
                       wupObject=jnt_root,
                       wupVector=wupVector)

        jnt_ref = primitive.addJointFromPos(jntRoot,
                                            setName("upEyelid_jnt_ref", i),
                                            pos=cv)
        jnt_ref.attr("radius").set(0.08)
        jnt_ref.attr("visibility").set(False)

        jnt = rigbits.addJnt(jnt_ref,
                             jnt_base,
                             grp=defset,
                             jntName=setName("upEyelid_jnt", i))
        upperEyelid_jnt.append(jnt)

    # Lower Eyelid joints ##################################################

    cvs = low_crv.getCVs(space="world")
    lowCrv_info = node.createCurveInfoNode(low_crv)

    # aim constrain targets and joints
    lowerEyelid_aimTargets = []
    lowerEyelid_jnt = []
    lowerEyelid_jntRoot = []

    for i, cv in enumerate(cvs):
        if i in [0, len(cvs) - 1]:
            continue

        if i % everyNVertex:
            continue

        # aim targets
        trn = primitive.addTransformFromPos(eyeTargets_root,
                                            setName("lowEyelid_aimTarget", i),
                                            pos=cv)
        lowerEyelid_aimTargets.append(trn)
        # connecting positions with crv
        pm.connectAttr(lowCrv_info + ".controlPoints[%s]" % str(i),
                       trn.attr("translate"))

        # joints
        jntRoot = primitive.addJointFromPos(jnt_root,
                                            setName("lowEyelid_base", i),
                                            pos=bboxCenter)
        jntRoot.attr("radius").set(0.08)
        jntRoot.attr("visibility").set(False)
        lowerEyelid_jntRoot.append(jntRoot)
        applyop.aimCns(jntRoot,
                       trn,
                       axis=axis,
                       wupObject=jnt_root,
                       wupVector=wupVector)

        jnt_ref = primitive.addJointFromPos(jntRoot,
                                            setName("lowEyelid_jnt_ref", i),
                                            pos=cv)
        jnt_ref.attr("radius").set(0.08)
        jnt_ref.attr("visibility").set(False)

        jnt = rigbits.addJnt(jnt_ref,
                             jnt_base,
                             grp=defset,
                             jntName=setName("lowEyelid_jnt", i))
        lowerEyelid_jnt.append(jnt)

    # Adding channels for eye tracking
    upVTracking_att = attribute.addAttribute(up_ctl,
                                             "vTracking",
                                             "float",
                                             upperVTrack,
                                             minValue=0)
    upHTracking_att = attribute.addAttribute(up_ctl,
                                             "hTracking",
                                             "float",
                                             upperHTrack,
                                             minValue=0)

    lowVTracking_att = attribute.addAttribute(low_ctl,
                                              "vTracking",
                                              "float",
                                              lowerVTrack,
                                              minValue=0)
    lowHTracking_att = attribute.addAttribute(low_ctl,
                                              "hTracking",
                                              "float",
                                              lowerHTrack,
                                              minValue=0)

    # vertical tracking connect
    up_mult_node = node.createMulNode(upVTracking_att,
                                      aimTrigger_ref.attr("ty"))
    low_mult_node = node.createMulNode(lowVTracking_att,
                                       aimTrigger_ref.attr("ty"))
    # remap to use the low or the up eyelid as driver contact base on
    # the eyetrack trigger direction
    uT_remap_node = pm.createNode("remapValue")
    aimTrigger_ref.attr("ty") >> uT_remap_node.inputValue
    uT_remap_node.inputMax.set(0.1)
    uT_remap_node.inputMin.set(-0.1)
    up_mult_node.outputX >> uT_remap_node.outputMax
    low_mult_node.outputX >> uT_remap_node.outputMin
    # up
    u_remap_node = pm.createNode("remapValue")
    contact_div_node.outputX >> u_remap_node.inputValue
    u_remap_node.value[0].value_Interp.set(2)
    u_remap_node.inputMin.set(0.9)
    up_mult_node.outputX >> u_remap_node.outputMin
    uT_remap_node.outColorR >> u_remap_node.outputMax

    # low
    l_remap_node = pm.createNode("remapValue")
    contact_div_node.outputX >> l_remap_node.inputValue
    l_remap_node.value[0].value_Interp.set(2)
    l_remap_node.inputMin.set(0.9)
    low_mult_node.outputX >> l_remap_node.outputMin
    uT_remap_node.outColorR >> l_remap_node.outputMax

    # up connect and turn down to low when contact
    pm.connectAttr(u_remap_node.outColorR, trackLvl[0].attr("ty"))

    pm.connectAttr(l_remap_node.outColorR, trackLvl[1].attr("ty"))

    # horizontal tracking connect
    mult_node = node.createMulNode(upHTracking_att, aimTrigger_ref.attr("tx"))
    # Correct right side horizontal tracking
    # if side == "R":
    #     mult_node = node.createMulNode(mult_node.attr("outputX"), -1)
    pm.connectAttr(mult_node + ".outputX", trackLvl[0].attr("tx"))

    mult_node = node.createMulNode(lowHTracking_att, aimTrigger_ref.attr("tx"))
    # Correct right side horizontal tracking
    # if side == "R":
    #     mult_node = node.createMulNode(mult_node.attr("outputX"), -1)
    pm.connectAttr(mult_node + ".outputX", trackLvl[1].attr("tx"))

    # adding channels for corner tracking
    # track_corner_lvl
    for i, ctl in enumerate(corner_ctl):
        VTracking_att = attribute.addAttribute(ctl,
                                               "vTracking",
                                               "float",
                                               0.1,
                                               minValue=0)
        if z_up:
            mult_node = node.createMulNode(VTracking_att, up_ctl.tz)
            mult_node2 = node.createMulNode(VTracking_att, low_ctl.tz)
            plus_node = node.createPlusMinusAverage1D(
                [mult_node.outputX, mult_node2.outputX])

            mult_node3 = node.createMulNode(plus_node.output1D, -1)
            pm.connectAttr(mult_node3.outputX, track_corner_lvl[i].attr("ty"))
        else:
            mult_node = node.createMulNode(VTracking_att, up_ctl.ty)
            mult_node2 = node.createMulNode(VTracking_att, low_ctl.ty)
            plus_node = node.createPlusMinusAverage1D(
                [mult_node.outputX, mult_node2.outputX])

            pm.connectAttr(plus_node.output1D, track_corner_lvl[i].attr("ty"))

    ###########################################
    # Reparenting
    ###########################################
    if parent_node:
        try:
            if isinstance(parent_node, string_types):
                parent_node = pm.PyNode(parent_node)
            parent_node.addChild(eye_root)
        except pm.MayaNodeError:
            pm.displayWarning("The eye rig can not be parent to: %s. Maybe "
                              "this object doesn't exist." % parent_node)

    ###########################################
    # Auto Skinning
    ###########################################
    if doSkin:
        # eyelid vertex rows
        totalLoops = rigidLoops + falloffLoops
        vertexLoopList = meshNavigation.getConcentricVertexLoop(
            vertexList, totalLoops)
        vertexRowList = meshNavigation.getVertexRowsFromLoops(vertexLoopList)

        # we set the first value 100% for the first initial loop
        skinPercList = [1.0]
        # we expect to have a regular grid topology
        for r in range(rigidLoops):
            for rr in range(2):
                skinPercList.append(1.0)
        increment = 1.0 / float(falloffLoops)
        # we invert to smooth out from 100 to 0
        inv = 1.0 - increment
        for r in range(falloffLoops):
            for rr in range(2):
                if inv < 0.0:
                    inv = 0.0
                skinPercList.append(inv)
            inv -= increment

        # this loop add an extra 0.0 indices to avoid errors
        for r in range(10):
            for rr in range(2):
                skinPercList.append(0.0)

        # base skin
        geo = pm.listRelatives(edgeLoopList[0], parent=True)[0]
        # Check if the object has a skinCluster
        objName = pm.listRelatives(geo, parent=True)[0]

        skinCluster = skin.getSkinCluster(objName)
        if not skinCluster:
            skinCluster = pm.skinCluster(headJnt,
                                         geo,
                                         tsb=True,
                                         nw=2,
                                         n="skinClsEyelid")

        eyelidJoints = upperEyelid_jnt + lowerEyelid_jnt
        pm.progressWindow(title="Auto skinning process",
                          progress=0,
                          max=len(eyelidJoints))
        firstBoundary = False
        for jnt in eyelidJoints:
            pm.progressWindow(e=True, step=1, status="\nSkinning %s" % jnt)
            skinCluster.addInfluence(jnt, weight=0)
            v = meshNavigation.getClosestVertexFromTransform(geo, jnt)

            for row in vertexRowList:

                if v in row:
                    it = 0  # iterator
                    inc = 1  # increment
                    for i, rv in enumerate(row):
                        try:
                            perc = skinPercList[it]
                            t_val = [(jnt, perc), (headJnt, 1.0 - perc)]
                            pm.skinPercent(skinCluster,
                                           rv,
                                           transformValue=t_val)
                            if rv.isOnBoundary():
                                # we need to compare with the first boundary
                                # to check if the row have inverted direction
                                # and offset the value
                                if not firstBoundary:
                                    firstBoundary = True
                                    firstBoundaryValue = it

                                else:
                                    if it < firstBoundaryValue:
                                        it -= 1
                                    elif it > firstBoundaryValue:
                                        it += 1
                                inc = 2
                        except IndexError:
                            continue

                        it = it + inc
        pm.progressWindow(e=True, endProgress=True)

        # Eye Mesh skinning
        skinCluster = skin.getSkinCluster(eyeMesh)
        if not skinCluster:
            skinCluster = pm.skinCluster(eyeCenter_jnt,
                                         eyeMesh,
                                         tsb=True,
                                         nw=1,
                                         n="skinClsEye")
예제 #15
0
파일: __init__.py 프로젝트: Mikfr83/mgear4
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.pos["root"], self.guide.pos["neck"])
        dist_node = node.createDistNode(self.root, self.ik_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")
        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan0_loc + ".ty")

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan1_loc.attr("ty"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         0.5, 0.5)
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.divisions):

            # References
            u = i / (self.divisions - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)
            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.intMRef + ".worldMatrix", self.ik_ctl + ".worldMatrix", u)
            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.fk_npo[i], self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")
            op.setAttr("driver_min", 0.1)

            # scl compas
            if i != 0:
                div_node = node.createDivNode(
                    [1, 1, 1],
                    [
                        self.fk_npo[i - 1] + ".sx",
                        self.fk_npo[i - 1] + ".sy",
                        self.fk_npo[i - 1] + ".sz",
                    ],
                )

                pm.connectAttr(div_node + ".output",
                               self.scl_npo[i] + ".scale")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"),
                )
            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"),
                )

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate",
                           self.fk_npo[i].attr("t"))
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == self.divisions - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl +
                                                         ".worldMatrix")
                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"],
                    self.lock_ori_att,
                )
                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Head ---------------------------------------------
        self.fk_ctl[-1].addChild(self.head_cns)

        # scale compensation
        dm_node = node.createDecomposeMatrixNode(self.scl_npo[0] +
                                                 ".parentInverseMatrix")

        pm.connectAttr(dm_node + ".outputScale", self.scl_npo[0] + ".scale")
예제 #16
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # 1 bone chain Upv ref ==============================================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleArmChainUpvRef"),
            self.armChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.armChainUpvRef[0], self.upv_cns, mo=True)

        # Visibilities -------------------------------------
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        if self.settings["ikTR"]:
            for shp in self.ikRot_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Controls ROT order -----------------------------------
        attribute.setRotOrder(self.fk0_ctl, "XZY")
        attribute.setRotOrder(self.fk1_ctl, "XYZ")
        attribute.setRotOrder(self.fk2_ctl, "YZX")
        attribute.setRotOrder(self.ik_ctl, "XYZ")

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        if self.settings["ikTR"]:
            # connect the control inputs
            outEff_dm = o_node.listConnections(c=True)[-1][1]

            inAttr = self.ikRot_npo.attr("translate")
            outEff_dm.attr("outputTranslate") >> inAttr

            outEff_dm.attr("outputScale") >> self.ikRot_npo.attr("scale")
            dm_node = node.createDecomposeMatrixNode(o_node.attr("outB"))
            dm_node.attr("outputRotate") >> self.ikRot_npo.attr("rotate")

            # rotation
            mulM_node = applyop.gear_mulmatrix_op(
                self.ikRot_ctl.attr("worldMatrix"),
                self.eff_loc.attr("parentInverseMatrix"))
            intM_node = applyop.gear_intmatrix_op(o_node.attr("outEff"),
                                                  mulM_node.attr("output"),
                                                  o_node.attr("blend"))
            dm_node = node.createDecomposeMatrixNode(intM_node.attr("output"))
            dm_node.attr("outputRotate") >> self.eff_loc.attr("rotate")
            transform.matchWorldTransform(self.fk2_ctl, self.ikRot_cns)

        # scale: this fix the scalin popping issue
        intM_node = applyop.gear_intmatrix_op(
            self.fk2_ctl.attr("worldMatrix"),
            self.ik_ctl_ref.attr("worldMatrix"), o_node.attr("blend"))
        mulM_node = applyop.gear_mulmatrix_op(
            intM_node.attr("output"), self.eff_loc.attr("parentInverseMatrix"))
        dm_node = node.createDecomposeMatrixNode(mulM_node.attr("output"))
        dm_node.attr("outputScale") >> self.eff_loc.attr("scale")

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------

        pm.pointConstraint(self.mid_ctl_twst_ref,
                           self.tws1_npo,
                           maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.orientConstraint(self.mid_ctl_twst_ref,
                            self.tws1_npo,
                            maintainOffset=False)

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.tws2_rot.attr("parentInverseMatrix"))
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        attribute.setRotOrder(self.tws2_rot, "XYZ")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_rot + ".rotate")

        self.tws0_rot.setAttr("sx", .001)
        self.tws2_rot.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))

        pm.connectAttr(self.armpit_roll_att, self.tws0_rot + ".rotateX")

        # Roll Shoulder
        applyop.splineIK(self.getName("rollRef"),
                         self.rollRef,
                         parent=self.root,
                         cParent=self.bone0)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root.attr("sx"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")
        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):

            if self.settings["supportJoints"]:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                elif i < (self.settings["div0"] + 4):
                    perc = .51

                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 3.0) * .5 / \
                        (self.settings["div1"] + 1.0)
            else:
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, self.tws1_rot, self.tws0_rot],
                    1.0 - perc, 40)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, self.tws1_rot, self.tws2_rot],
                    perc, 40)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)
        if self.settings["ikTR"]:
            transform.matchWorldTransform(self.ikRot_ctl, self.match_ikRot)
            transform.matchWorldTransform(self.fk_ctl[2], self.match_fk2)

        return
예제 #17
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ===========================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root_ctl, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        self.ikhArmRef, self.tmpCrv = applyop.splineIK(
            self.getName("legRollRef"),
            self.rollRef,
            parent=self.root,
            cParent=self.bone0)

        pm.pointConstraint(self.mid_ctl, self.tws1_loc, maintainOffset=False)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1_loc.scaleX)
        pm.connectAttr(self.mid_ctl.scaleX, self.tws1B_loc.scaleX)
        applyop.oriCns(self.mid_ctl, self.tws1_rot, maintainOffset=False)
        applyop.oriCns(self.mid_ctl, self.tws1B_rot, maintainOffset=False)
        if self.negate:
            axis = "xz"
            axisb = "-xz"
        else:
            axis = "-xz"
            axisb = "xz"
        applyop.aimCns(self.tws1_loc,
                       self.root_ctl,
                       axis=axis,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.tws1B_loc,
                       self.eff_loc,
                       axis=axisb,
                       wupType=4,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.thick_ctl,
                           self.tws1B_loc,
                           maintainOffset=False)
        pm.pointConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        pm.scaleConstraint(self.eff_loc, self.tws2_loc, maintainOffset=False)
        applyop.oriCns(self.bone1, self.tws2_loc, maintainOffset=False)

        applyop.oriCns(self.tws_ref, self.tws2_rot)

        self.tws0_loc.setAttr("sx", .001)
        self.tws2_loc.setAttr("sx", .001)

        add_node = node.createAddNode(self.roundness_att, .001)
        pm.connectAttr(add_node + ".output", self.tws1_rot.attr("sx"))
        pm.connectAttr(add_node + ".output", self.tws1B_rot.attr("sx"))

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        if self.settings["extraTweak"]:
            for tweak_ctl in self.tweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        b_twist = False
        for i, div_cns in enumerate(self.div_cns):
            subdiv = False
            if self.settings["supportJoints"]:
                if i == len(self.div_cns) - 1 or i == 0:
                    subdiv = 45
                else:
                    subdiv = 10

                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    perc = .49
                    subdiv = 45
                elif i < (self.settings["div0"] + 3):
                    perc = .50
                    subdiv = 45
                elif i < (self.settings["div0"] + 4):
                    b_twist = True
                    perc = .51
                    subdiv = 45

                else:
                    perc = (.5 + (i - self.settings["div0"] - 3.0) * .5 /
                            (self.settings["div1"] + 1.0))
            else:
                subdiv = 40
                if i < (self.settings["div0"] + 1):
                    perc = i * .5 / (self.settings["div0"] + 1.0)
                elif i < (self.settings["div0"] + 2):
                    b_twist = True
                    perc = .501
                else:
                    perc = .5 + \
                        (i - self.settings["div0"] - 1.0) * .5 / \
                        (self.settings["div1"] + 1.0)

            perc = max(.001, min(.990, perc))

            # mid twist distribution
            if b_twist:
                mid_twist = self.tws1B_rot
            else:
                mid_twist = self.tws1_rot

            # Roll
            if self.negate:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws2_rot, mid_twist, self.tws0_rot],
                    1.0 - perc, subdiv)
            else:
                o_node = applyop.gear_rollsplinekine_op(
                    div_cns, [self.tws0_rot, mid_twist, self.tws2_rot], perc,
                    subdiv)

            pm.connectAttr(self.resample_att, o_node + ".resample")
            pm.connectAttr(self.absolute_att, o_node + ".absolute")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use
        # the scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of
        # re-match the world matrix again
        # transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        # transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        # transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        # transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        # connect_reader
        pm.parentConstraint(self.bone0, self.readerA, mo=True)
        pm.parentConstraint(self.bone1, self.readerB, mo=True)

        # connect auto thickness
        if self.negate and not self.settings["mirrorMid"]:
            d_val = -180 / self.length1
        else:
            d_val = 180 / self.length1
        div_thick_node = node.createDivNode(self.knee_thickness_att, d_val)
        node.createMulNode(div_thick_node.outputX, self.readerB.rx,
                           self.thick_lvl.tx)

        return
예제 #18
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # 1 bone chain Upv ref ==============================
        self.ikHandleUpvRef = primitive.addIkHandle(
            self.root, self.getName("ikHandleLegChainUpvRef"),
            self.legChainUpvRef, "ikSCsolver")
        pm.pointConstraint(self.ik_ctl, self.ikHandleUpvRef)
        pm.parentConstraint(self.legChainUpvRef[0],
                            self.ik_ctl,
                            self.upv_cns,
                            mo=True)

        # Visibilities -------------------------------------
        # shape.dispGeometry
        # fk
        fkvis_node = node.createReverseNode(self.blend_att)

        for shp in self.fk0_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk1_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))
        for shp in self.fk2_ctl.getShapes():
            pm.connectAttr(fkvis_node + ".outputX", shp.attr("visibility"))

        # ik
        for shp in self.upv_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ikcns_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.ik_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.line_ref.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # IK Solver -----------------------------------------
        out = [self.bone0, self.bone1, self.ctrn_loc, self.eff_loc]
        o_node = applyop.gear_ikfk2bone_op(out, self.root_ctl, self.ik_ref,
                                           self.upv_ctl, self.fk_ctl[0],
                                           self.fk_ctl[1], self.fk_ref,
                                           self.length0, self.length1,
                                           self.negate)

        pm.connectAttr(self.blend_att, o_node + ".blend")
        if self.negate:
            mulVal = -1
        else:
            mulVal = 1
        node.createMulNode(self.roll_att, mulVal, o_node + ".roll")
        # pm.connectAttr(self.roll_att, o_node+".roll")
        pm.connectAttr(self.scale_att, o_node + ".scaleA")
        pm.connectAttr(self.scale_att, o_node + ".scaleB")
        pm.connectAttr(self.maxstretch_att, o_node + ".maxstretch")
        pm.connectAttr(self.slide_att, o_node + ".slide")
        pm.connectAttr(self.softness_att, o_node + ".softness")
        pm.connectAttr(self.reverse_att, o_node + ".reverse")

        # Twist references ---------------------------------
        o_node = applyop.gear_mulmatrix_op(
            self.eff_loc.attr("worldMatrix"),
            self.root.attr("worldInverseMatrix"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputTranslate",
                       self.tws2_npo.attr("translate"))

        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(o_node + ".output", dm_node + ".inputMatrix")
        pm.connectAttr(dm_node + ".outputRotate", self.tws2_npo.attr("rotate"))

        # spline IK for  twist jnts
        self.ikhUpLegTwist, self.uplegTwistCrv = applyop.splineIK(
            self.getName("uplegTwist"),
            self.uplegTwistChain,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegTwist, self.lowlegTwistCrv = applyop.splineIK(
            self.getName("lowlegTwist"),
            self.lowlegTwistChain,
            parent=self.root,
            cParent=self.bone1)

        # references
        self.ikhUpLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("uplegRollRef"),
            self.uplegRollRef,
            parent=self.root,
            cParent=self.bone0)

        self.ikhLowLegRef, self.tmpCrv = applyop.splineIK(
            self.getName("lowlegRollRef"),
            self.lowlegRollRef,
            parent=self.root,
            cParent=self.eff_loc)

        self.ikhAuxTwist, self.tmpCrv = applyop.splineIK(
            self.getName("auxTwist"),
            self.auxTwistChain,
            parent=self.root,
            cParent=self.eff_loc)

        # setting connexions for ikhUpLegTwist
        self.ikhUpLegTwist.attr("dTwistControlEnable").set(True)
        self.ikhUpLegTwist.attr("dWorldUpType").set(4)
        self.ikhUpLegTwist.attr("dWorldUpAxis").set(3)
        self.ikhUpLegTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhUpLegTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.uplegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.bone0.attr("worldMatrix[0]"),
                       self.ikhUpLegTwist.attr("dWorldUpMatrixEnd"))

        # setting connexions for ikhAuxTwist
        self.ikhAuxTwist.attr("dTwistControlEnable").set(True)
        self.ikhAuxTwist.attr("dWorldUpType").set(4)
        self.ikhAuxTwist.attr("dWorldUpAxis").set(3)
        self.ikhAuxTwist.attr("dWorldUpVectorZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorY").set(0.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndZ").set(1.0)
        self.ikhAuxTwist.attr("dWorldUpVectorEndY").set(0.0)
        pm.connectAttr(self.lowlegRollRef[0].attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrix"))
        pm.connectAttr(self.tws_ref.attr("worldMatrix[0]"),
                       self.ikhAuxTwist.attr("dWorldUpMatrixEnd"))
        pm.connectAttr(self.auxTwistChain[1].attr("rx"),
                       self.ikhLowLegTwist.attr("twist"))

        pm.parentConstraint(self.bone1, self.aux_npo, maintainOffset=True)

        # scale arm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.uplegTwistCrv, ch=True)
        alAttrUpLeg = arclen_node.attr("arcLength")
        muldiv_nodeArm = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeArm.attr("input1X"))
        muldiv_nodeArm.attr("input2X").set(alAttrUpLeg.get())
        muldiv_nodeArm.attr("operation").set(2)
        for jnt in self.uplegTwistChain:
            pm.connectAttr(muldiv_nodeArm.attr("outputX"), jnt.attr("sx"))

        # scale forearm length for twist chain (not the squash and stretch)
        arclen_node = pm.arclen(self.lowlegTwistCrv, ch=True)
        alAttrLowLeg = arclen_node.attr("arcLength")
        muldiv_nodeLowLeg = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node.attr("arcLength"),
                       muldiv_nodeLowLeg.attr("input1X"))
        muldiv_nodeLowLeg.attr("input2X").set(alAttrLowLeg.get())
        muldiv_nodeLowLeg.attr("operation").set(2)
        for jnt in self.lowlegTwistChain:
            pm.connectAttr(muldiv_nodeLowLeg.attr("outputX"), jnt.attr("sx"))

        # scale compensation for the first  twist join
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix[0]"),
                       dm_node.attr("inputMatrix"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.uplegTwistChain[0].attr("inverseScale"))
        pm.connectAttr(dm_node.attr("outputScale"),
                       self.lowlegTwistChain[0].attr("inverseScale"))

        # tangent controls
        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1A_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1A_loc.attr("rz"))
        if self.negate:
            axis = "xz"
        else:
            axis = "-xz"
        applyop.aimCns(self.tws1A_npo,
                       self.tws0_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.lowlegTangentB_loc,
                       self.lowlegTangentA_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        pm.pointConstraint(self.eff_loc, self.lowlegTangentB_loc)

        muldiv_node = pm.createNode("multiplyDivide")
        muldiv_node.attr("input2X").set(-1)
        pm.connectAttr(self.tws1B_npo.attr("rz"), muldiv_node.attr("input1X"))
        muldiv_nodeBias = pm.createNode("multiplyDivide")
        pm.connectAttr(muldiv_node.attr("outputX"),
                       muldiv_nodeBias.attr("input1X"))
        pm.connectAttr(self.roundness_att, muldiv_nodeBias.attr("input2X"))
        pm.connectAttr(muldiv_nodeBias.attr("outputX"),
                       self.tws1B_loc.attr("rz"))
        if self.negate:
            axis = "-xz"
        else:
            axis = "xz"
        applyop.aimCns(self.tws1B_npo,
                       self.tws2_loc,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        applyop.aimCns(self.uplegTangentA_loc,
                       self.uplegTangentB_npo,
                       axis=axis,
                       wupType=2,
                       wupVector=[0, 0, 1],
                       wupObject=self.mid_ctl,
                       maintainOffset=False)

        # Volume -------------------------------------------
        distA_node = node.createDistNode(self.tws0_loc, self.tws1_loc)
        distB_node = node.createDistNode(self.tws1_loc, self.tws2_loc)
        add_node = node.createAddNode(distA_node + ".distance",
                                      distB_node + ".distance")
        div_node = node.createDivNode(add_node + ".output",
                                      self.root_ctl.attr("sx"))

        # comp scaling issue
        dm_node = pm.createNode("decomposeMatrix")
        pm.connectAttr(self.root.attr("worldMatrix"), dm_node + ".inputMatrix")

        div_node2 = node.createDivNode(div_node + ".outputX",
                                       dm_node + ".outputScaleX")

        self.volDriver_att = div_node2 + ".outputX"

        # connecting tangent scaele compensation after volume to
        # avoid duplicate some nodes
        distA_node = node.createDistNode(self.tws0_loc, self.mid_ctl)
        distB_node = node.createDistNode(self.mid_ctl, self.tws2_loc)

        div_nodeUpLeg = node.createDivNode(distA_node + ".distance",
                                           dm_node.attr("outputScaleX"))

        div_node2 = node.createDivNode(div_nodeUpLeg + ".outputX",
                                       distA_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1A_loc.attr("sx"))

        pm.connectAttr(div_node2.attr("outputX"),
                       self.uplegTangentA_loc.attr("sx"))

        div_nodeLowLeg = node.createDivNode(distB_node + ".distance",
                                            dm_node.attr("outputScaleX"))
        div_node2 = node.createDivNode(div_nodeLowLeg + ".outputX",
                                       distB_node.attr("distance").get())

        pm.connectAttr(div_node2.attr("outputX"), self.tws1B_loc.attr("sx"))
        pm.connectAttr(div_node2.attr("outputX"),
                       self.lowlegTangentB_loc.attr("sx"))

        # conection curve
        cnts = [
            self.uplegTangentA_loc, self.uplegTangentA_ctl,
            self.uplegTangentB_ctl, self.kneeTangent_ctl
        ]
        applyop.gear_curvecns_op(self.uplegTwistCrv, cnts)

        cnts = [
            self.kneeTangent_ctl, self.lowlegTangentA_ctl,
            self.lowlegTangentB_ctl, self.lowlegTangentB_loc
        ]
        applyop.gear_curvecns_op(self.lowlegTwistCrv, cnts)

        # Tangent controls vis
        for shp in self.uplegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.uplegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentA_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.lowlegTangentB_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))
        for shp in self.kneeTangent_ctl.getShapes():
            pm.connectAttr(self.tangentVis_att, shp.attr("visibility"))

        # Divisions ----------------------------------------
        # at 0 or 1 the division will follow exactly the rotation of the
        # controler.. and we wont have this nice tangent + roll
        for i, div_cns in enumerate(self.div_cns):
            if i < (self.settings["div0"] + 2):
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.uplegTwistChain[i] + ".worldMatrix",
                    div_cns + ".parentInverseMatrix")
                lastUpLegDiv = div_cns
            else:
                o_node = self.lowlegTwistChain[i - (self.settings["div0"] + 2)]
                mulmat_node = applyop.gear_mulmatrix_op(
                    o_node + ".worldMatrix", div_cns + ".parentInverseMatrix")
                lastLowLegDiv = div_cns
            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", div_cns + ".t")
            pm.connectAttr(dm_node + ".outputRotate", div_cns + ".r")

            # Squash n Stretch
            o_node = applyop.gear_squashstretch2_op(
                div_cns, None, pm.getAttr(self.volDriver_att), "x")
            pm.connectAttr(self.volume_att, o_node + ".blend")
            pm.connectAttr(self.volDriver_att, o_node + ".driver")
            pm.connectAttr(self.st_att[i], o_node + ".stretch")
            pm.connectAttr(self.sq_att[i], o_node + ".squash")

        # force translation for last loc arm and foreamr
        applyop.gear_mulmatrix_op(self.kneeTangent_ctl.worldMatrix,
                                  lastUpLegDiv.parentInverseMatrix,
                                  lastUpLegDiv, "t")
        applyop.gear_mulmatrix_op(self.tws2_loc.worldMatrix,
                                  lastLowLegDiv.parentInverseMatrix,
                                  lastLowLegDiv, "t")

        # NOTE: next line fix the issue on meters.
        # This is special case becasuse the IK solver from mGear use the
        # scale as lenght and we have shear
        # TODO: check for a more clean and elegant solution instead of
        # re-match the world matrix again
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0_off)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1_off)
        transform.matchWorldTransform(self.fk_ctl[0], self.match_fk0)
        transform.matchWorldTransform(self.fk_ctl[1], self.match_fk1)

        # match IK/FK ref
        pm.parentConstraint(self.bone0, self.match_fk0_off, mo=True)
        pm.parentConstraint(self.bone1, self.match_fk1_off, mo=True)

        return
예제 #19
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl, self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[-1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)
            if i == 0:  # we add extra 10% to the first vertebra
                u = (1.0 / (self.settings["division"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y",
                                                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik0_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik1_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Connections (Hooks) ------------------------------
        pm.parentConstraint(self.hip_lvl, self.cnx0)
        pm.scaleConstraint(self.hip_lvl, self.cnx0)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
예제 #20
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl, self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[1], self.guide.apos[-2])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        tangents = [None, "tan0", "tan1"]
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            # check the indx to calculate mid point based on number of division
            # we want to use the same spine for mannequin and metahuman spine
            if self.settings["division"] == 4 and i in [1, 2]:
                u_param = curve.getCurveParamAtPosition(
                    self.slv_crv, self.guide.pos[tangents[i]])[0]
                cnsType = True
            elif self.settings["division"] == 3 and i in [1]:
                u_param = curve.getCurveParamAtPosition(
                    self.slv_crv, self.guide.pos[tangents[i]])[0]
                cnsType = True
            else:
                u_param = u
                cnsType = False

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, cnsType,
                                  u_param, True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y",
                                                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik0_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik1_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # change parent after operators applied
        pm.parent(self.scl_transforms[-1], self.fk_ctl[-1])

        # Connections (Hooks) ------------------------------
        pm.parentConstraint(self.pelvis_lvl, self.cnx0)
        pm.scaleConstraint(self.pelvis_lvl, self.cnx0)

        transform.matchWorldTransform(self.scl_transforms[-1], self.cnx1)
        t = transform.setMatrixPosition(transform.getTransform(self.cnx1),
                                        self.guide.apos[-1])
        self.cnx1.setMatrix(t, worldSpace=True)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1, mo=True)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)