예제 #1
0
def test_attack_models_are_created(
    data,
    shadow_model_fn,
    shadow_model_serializer,
    attack_model_fn,
    attack_model_serializer,
):

    (X_train, y_train), _ = data
    smb = ShadowModelBundle(
        shadow_model_fn,
        shadow_dataset_size=SHADOW_DATASET_SIZE,
        num_models=3,
        serializer=shadow_model_serializer,
    )
    X_shadow, y_shadow = smb.fit_transform(X_train,
                                           y_train,
                                           fit_kwargs=dict(epochs=5,
                                                           verbose=False))

    amb = AttackModelBundle(attack_model_fn,
                            num_classes=NUM_CLASSES,
                            serializer=attack_model_serializer)

    # Fit the attack models.
    amb.fit(X_shadow, y_shadow, fit_kwargs=dict(epochs=5, verbose=False))

    # Predict membership for some training data.
    membership_guesses = amb.predict(X_shadow[:100])
    assert membership_guesses.shape == (len(X_shadow[:100]), )
예제 #2
0
파일: CNN_capsule.py 프로젝트: leakyH/mia
def demo(argv):
    del argv  # Unused.

    (X_train, y_train), (X_test, y_test) = get_data()

    # Train the target model.
    print("Training the target model...")
    target_model = target_model_fn()
    target_model.fit(
        X_train, y_train, batch_size=128, epochs=FLAGS.target_epochs, validation_split=0.5, shuffle=True
    )
    #target_model.fit(
    #    X_train, y_train, batch_size=128, epochs=FLAGS.target_epochs, validation_data=(X_test, y_test), shuffle=True
    #)

    # Train the shadow models.
    smb = ShadowModelBundle(
        target_model_fn,
        shadow_dataset_size=SHADOW_DATASET_SIZE,
        num_models=FLAGS.num_shadows,
    )

    # We assume that attacker's data were not seen in target's training.
    attacker_X_train, attacker_X_test, attacker_y_train, attacker_y_test = train_test_split(
        X_test, y_test, test_size=0.1
    )
    print(attacker_X_train.shape, attacker_X_test.shape)

    print("Training the shadow models...")
    X_shadow, y_shadow = smb.fit_transform(
        attacker_X_train,
        attacker_y_train,
        fit_kwargs=dict(
            epochs=FLAGS.target_epochs,
            verbose=True,
            validation_data=(attacker_X_test, attacker_y_test),
        ),
    )

    # ShadowModelBundle returns data in the format suitable for the AttackModelBundle.
    amb = AttackModelBundle(attack_model_fn, num_classes=NUM_CLASSES)

    # Fit the attack models.
    print("Training the attack models...")
    amb.fit(
        X_shadow, y_shadow, fit_kwargs=dict(epochs=FLAGS.attack_epochs, verbose=True)
    )

    # Test the success of the attack.

    # Prepare examples that were in the training, and out of the training.
    data_in = X_train[:ATTACK_TEST_DATASET_SIZE], y_train[:ATTACK_TEST_DATASET_SIZE]
    data_out = X_test[:ATTACK_TEST_DATASET_SIZE], y_test[:ATTACK_TEST_DATASET_SIZE]

    # Compile them into the expected format for the AttackModelBundle.
    attack_test_data, real_membership_labels = prepare_attack_data(
        target_model, data_in, data_out
    )

    # Compute the attack accuracy.
    attack_guesses = amb.predict(attack_test_data)
    attack_accuracy = np.mean(attack_guesses == real_membership_labels)

    print(attack_accuracy)
예제 #3
0
def demo(argv):
    x = pd.read_csv(
        r"C:\document\education\python\python\predict mortality\data\drug_table_mortality_with_no.csv"
    )
    y = pd.read_csv(
        r"C:\document\education\python\python\predict mortality\data\mortality_table.csv"
    )

    #    (X_train, y_train), (X_test, y_test) = get_data()
    X, Y = ga.shuffleData(x, y)
    X_test = X[25000:]  #####################################################
    y_test = Y[
        25000:]  #########################################################
    X_train = X[:8 * scala]
    y_train = Y[:8 * scala]

    # Train the target model.
    print("Training the target model...")
    target_model = train_target(X, Y)

    # Train the shadow models.
    smb = ShadowModelBundle(
        target_model_fn,
        shadow_dataset_size=SHADOW_DATASET_SIZE,
        num_models=FLAGS.num_shadows,
    )

    # We assume that attacker's data were not seen in target's training.
    attacker_X_train, attacker_X_test, attacker_y_train, attacker_y_test = train_test_split(
        X_test, y_test, test_size=0.1)
    print(attacker_X_train.shape, attacker_X_test.shape)

    print("Training the shadow models...")
    X_shadow, y_shadow = smb.fit_transform(
        attacker_X_train,
        attacker_y_train,
        fit_kwargs=dict(
            epochs=FLAGS.target_epochs,
            verbose=True,
            validation_data=(attacker_X_test, attacker_y_test),
        ),
    )
    print("shadow_shape")
    print(X_shadow.shape)
    print(y_shadow)
    # ShadowModelBundle returns data in the format suitable for the AttackModelBundle.
    amb = AttackModelBundle(attack_model_fn, num_classes=NUM_CLASSES)

    # Fit the attack models.
    print("Training the attack models...")
    amb.fit(X_shadow,
            y_shadow,
            fit_kwargs=dict(epochs=FLAGS.attack_epochs, verbose=True))

    # Test the success of the attack.

    # Prepare examples that were in the training, and out of the training.
    data_in = X_train[:
                      ATTACK_TEST_DATASET_SIZE], y_train[:
                                                         ATTACK_TEST_DATASET_SIZE]
    data_out = X_test[:
                      ATTACK_TEST_DATASET_SIZE], y_test[:
                                                        ATTACK_TEST_DATASET_SIZE]

    # Compile them into the expected format for the AttackModelBundle.
    attack_test_data, real_membership_labels = prepare_attack_data(
        target_model, data_in, data_out)

    # Compute the attack accuracy.
    attack_guesses = amb.predict(attack_test_data)
    attack_accuracy = np.mean(attack_guesses == real_membership_labels)

    print(attack_accuracy)
예제 #4
0
"""
the xshadow and yshadow are not strictly follow the shape of attacher_train
because retranformation is done in below
"""
X_shadow, y_shadow = smb.fit_transform(
    attacker_X_train,
    attacker_y_train,
    fit_kwargs=dict(
        epochs=10,
        verbose=False,
        validation_data=(attacker_X_test, attacker_y_test),
    ),
)

amb = AttackModelBundle(attack_model_fn, num_classes=NUM_CLASSES)
amb.fit(X_shadow, y_shadow, fit_kwargs=dict(epochs=12, verbose=False))

data_in = X_train[:
                  ATTACK_TEST_DATASET_SIZE_used], y_train[:
                                                          ATTACK_TEST_DATASET_SIZE_used]
data_out = X_test[:
                  ATTACK_TEST_DATASET_SIZE_not_used], y_test[:
                                                             ATTACK_TEST_DATASET_SIZE_not_used]

attack_test_data, real_membership_labels = prepare_attack_data(
    target_model, data_in, data_out)

attack_guesses = amb.predict(attack_test_data)
attack_accuracy = np.mean(attack_guesses == real_membership_labels)
print(attack_accuracy)
예제 #5
0
def demo(argv):
    del argv  # Unused.

    (X_train, y_train), (X_test, y_test) = load_mnist()

    # Train the target model.
    print("Training the target model...")
    target_model = mnist_dpsgd_tutorial_keras.main()
    target_model.fit(X_train,
                     y_train,
                     epochs=FLAGS.target_epochs,
                     validation_split=0.1,
                     verbose=True,
                     validation_data=(X_test, y_test),
                     batch_size=250)

    # Train the shadow models.
    smb = ShadowModelBundle(
        mnist_dpsgd_tutorial_keras.main,
        shadow_dataset_size=SHADOW_DATASET_SIZE,
        num_models=FLAGS.num_shadows,
    )

    # We assume that attacker's data were not seen in target's training.
    attacker_X_train, attacker_X_test, attacker_y_train, attacker_y_test = train_test_split(
        X_test, y_test, test_size=0.1)
    print(attacker_X_train.shape, attacker_X_test.shape)

    print("Training the shadow models...")
    X_shadow, y_shadow = smb.fit_transform(
        attacker_X_train,
        attacker_y_train,
        fit_kwargs=dict(epochs=FLAGS.target_epochs,
                        verbose=True,
                        validation_data=(attacker_X_test, attacker_y_test),
                        batch_size=250),
    )

    # ShadowModelBundle returns data in the format suitable for the AttackModelBundle.
    amb = AttackModelBundle(attack_model_fn, num_classes=NUM_CLASSES)

    # Fit the attack models.
    print("Training the attack models...")
    amb.fit(X_shadow,
            y_shadow,
            fit_kwargs=dict(epochs=FLAGS.attack_epochs, verbose=True))

    # Test the success of the attack.

    # Prepare examples that were in the training, and out of the training.
    data_in = X_train[:
                      ATTACK_TEST_DATASET_SIZE], y_train[:
                                                         ATTACK_TEST_DATASET_SIZE]
    data_out = X_test[:
                      ATTACK_TEST_DATASET_SIZE], y_test[:
                                                        ATTACK_TEST_DATASET_SIZE]

    # Compile them into the expected format for the AttackModelBundle.
    attack_test_data, real_membership_labels = prepare_attack_data(
        target_model, data_in, data_out)

    # Compute the attack accuracy.
    attack_guesses = amb.predict(attack_test_data)
    attack_accuracy = np.mean(attack_guesses == real_membership_labels)

    print(attack_accuracy)
    fscores = precision_recall_fscore_support(real_membership_labels,
                                              attack_guesses)

    [print(fscore) for fscore in fscores]
    from sklearn.metrics import precision_score, recall_score, f1_score

    print(f1_score(real_membership_labels, attack_guesses))
예제 #6
0
def demo(argv):
    del argv  .

    (x_train, y_train), (x_test, y_test) = get_data()

    # 训练target model
    print("Training the target model...")
    target_model = target_model_fn()
    target_model.fit(
        x_train, y_train, epochs=FLAGS.target_epochs, validation_split=0.9, verbose=True
    )

    # 训练shadow model
    smb = ShadowModelBundle(
        target_model_fn,
        shadow_dataset_size=SHADOW_DATASET_SIZE,
        num_models=FLAGS.num_shadows,
    )

    # Shadow model所用数据
    attacker_x_train, attacker_x_test, attacker_y_train, attacker_y_test = train_test_split(
        x_test, y_test, test_size=0.1
    )
    print(attacker_x_train.shape, attacker_x_test.shape)

    print("Training the shadow models...")
    X_shadow, y_shadow = smb.fit_transform(
        attacker_x_train,
        attacker_y_train,
        fit_kwargs=dict(
            epochs=FLAGS.target_epochs,
            verbose=True,
            validation_data=(attacker_x_test, attacker_y_test),
        ),
    )

    # ShadowModelBundle 返回 AttackModelBundle 所需的数据形式
    amb = AttackModelBundle(attack_model_fn, num_classes=NUM_CLASSES)

    # 训练attack models.
    print("Training the attack models...")
    amb.fit(
        X_shadow, y_shadow, fit_kwargs=dict(epochs=FLAGS.attack_epochs, verbose=True)
    )

    # 测试attack model效果

    # 生成测试集
    data_in = x_train[:ATTACK_TEST_DATASET_SIZE], y_train[:ATTACK_TEST_DATASET_SIZE]
    data_out = x_test[:ATTACK_TEST_DATASET_SIZE], y_test[:ATTACK_TEST_DATASET_SIZE]

    
    attack_test_data, real_membership_labels = prepare_attack_data(
        target_model, data_in, data_out
    )

    # 计算成员检测攻击的准确度
    attack_guesses = amb.predict(attack_test_data)
    attack_accuracy = np.mean(attack_guesses == real_membership_labels)

    print(attack_accuracy)