listfile=os.path.join(args.data, 'train_listfile.csv')) val_reader = LengthOfStayReader( dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'val_listfile.csv')) discretizer = Discretizer(timestep=args.timestep, store_masks=True, impute_strategy='previous', start_time='zero') if args.deep_supervision: discretizer_header = discretizer.transform( train_data_loader._data["X"][0])[1].split(',') else: discretizer_header = discretizer.transform( train_reader.read_example(0)["X"])[1].split(',') cont_channels = [ i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1 ] normalizer = Normalizer( fields=cont_channels) # choose here which columns to standardize normalizer_state = args.normalizer_state if normalizer_state is None: normalizer_state = 'los_ts{}.input_str:previous.start_time:zero.n5e4.normalizer'.format( args.timestep) normalizer_state = os.path.join(os.path.dirname(__file__), normalizer_state) normalizer.load_params(normalizer_state) args_dict = dict(args._get_kwargs())
train_data_loader = common_utils.DeepSupervisionDataLoader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'train_listfile.csv'), small_part=args.small_part, sources=sources, timesteps=args.timesteps, condensed=args.condensed) val_data_loader = common_utils.DeepSupervisionDataLoader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'val_listfile.csv'), small_part=args.small_part, sources=sources, timesteps=args.timesteps, condensed=args.condensed) else: train_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'train_listfile.csv'), sources=sources, timesteps=args.timesteps, condensed=args.condensed) val_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'val_listfile.csv'), sources=sources, timesteps=args.timesteps, condensed=args.condensed) train_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'train_listfile.csv'), sources=sources, timesteps=args.timesteps, condensed=args.condensed) reader_header = train_reader.read_example(0)['header'] n_bins = len(train_reader.read_example(0)) discretizer = Discretizer(timestep=args.timestep, store_masks=True, impute_strategy='previous', start_time='zero', header = reader_header, sources = sources) if args.deep_supervision: discretizer_header = discretizer.transform(train_data_loader._data["X"][0])[1].split(',') else: discretizer_header = discretizer.transform(train_reader.read_example(0)["X"])[1].split(',') cont_channels = [i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1] normalizer = Normalizer(fields=cont_channels) # choose here which columns to standardize normalizer_state = args.normalizer_state
small_part=args.small_part) else: train_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'train_listfile.csv')) val_reader = LengthOfStayReader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'val_listfile.csv')) discretizer = Discretizer(timestep=args.timestep, store_masks=True, impute_strategy='previous', start_time='zero') if args.deep_supervision: discretizer_header = discretizer.transform(train_data_loader._data["X"][0])[1].split(',') else: discretizer_header = discretizer.transform(train_reader.read_example(0)["X"])[1].split(',') cont_channels = [i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1] normalizer = Normalizer(fields=cont_channels) # choose here which columns to standardize normalizer_state = args.normalizer_state if normalizer_state is None: normalizer_state = 'los_ts{}.input_str:previous.start_time:zero.n5e4.normalizer'.format(args.timestep) normalizer_state = os.path.join(os.path.dirname(__file__), normalizer_state) normalizer.load_params(normalizer_state) args_dict = dict(args._get_kwargs()) args_dict['header'] = discretizer_header args_dict['task'] = 'los' args_dict['nhead'] = 1 args_dict['dim_feedforward'] = 128 args_dict['dropout'] = 0.5
small_part=args.small_part) else: train_reader = LengthOfStayReader(dataset_dir='../../data/length-of-stay/train/', listfile='../../data/length-of-stay/train_listfile.csv') val_reader = LengthOfStayReader(dataset_dir='../../data/length-of-stay/train/', listfile='../../data/length-of-stay/val_listfile.csv') discretizer = Discretizer(timestep=args.timestep, store_masks=True, imput_strategy='previous', start_time='zero') if args.deep_supervision: discretizer_header = discretizer.transform(train_data_loader._data["X"][0])[1].split(',') else: discretizer_header = discretizer.transform(train_reader.read_example(0)["X"])[1].split(',') cont_channels = [i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1] normalizer = Normalizer(fields=cont_channels) # choose here onlycont vs all normalizer.load_params('los_ts{}.input_str:previous.start_time:zero.n5e4.normalizer'.format(args.timestep)) args_dict = dict(args._get_kwargs()) args_dict['header'] = discretizer_header args_dict['task'] = 'los' args_dict['num_classes'] = (1 if args.partition == 'none' else 10) # Build the model print "==> using model {}".format(args.network) model_module = imp.load_source(os.path.basename(args.network), args.network) model = model_module.Network(**args_dict)