discretizer, normalizer, args.batch_size, shuffle=False) else: # Set number of batches in one epoch train_nbatches = 2000 val_nbatches = 1000 if args.small_part: train_nbatches = 20 val_nbatches = 20 train_data_gen = utils.BatchGen(reader=train_reader, discretizer=discretizer, normalizer=normalizer, partition=args.partition, batch_size=args.batch_size, steps=train_nbatches, shuffle=True) val_data_gen = utils.BatchGen(reader=val_reader, discretizer=discretizer, normalizer=normalizer, partition=args.partition, batch_size=args.batch_size, steps=val_nbatches, shuffle=False) if args.mode == 'train': # Prepare training path = os.path.join( args.output_dir, 'keras_states/' + model.final_name + '.chunk{epoch}.test{val_loss}.state')
args.partition, discretizer, normalizer, args.batch_size) val_data_gen = utils.BatchGenDeepSupervisoin(val_data_loader, args.partition, discretizer, normalizer, args.batch_size) else: # Set number of batches in one epoch train_nbatches = 2000 val_nbatches = 1000 if (args.small_part): train_nbatches = 20 val_nbatches = 20 train_data_gen = utils.BatchGen(reader=train_reader, discretizer=discretizer, normalizer=normalizer, partition=args.partition, batch_size=args.batch_size, steps=train_nbatches) val_data_gen = utils.BatchGen(reader=val_reader, discretizer=discretizer, normalizer=normalizer, partition=args.partition, batch_size=args.batch_size, steps=val_nbatches) #val_data_gen.steps = val_reader.get_number_of_examples() // args.batch_size #train_data_gen.steps = train_reader.get_number_of_examples() // args.batch_size if args.mode == 'train': # Prepare training path = 'keras_states/' + model.final_name + '.chunk{epoch}.test{val_loss}.state'