## print model summary model.summary() # Load model weights n_trained_chunks = 0 if args.load_state != "": model.load_weights(args.load_state) n_trained_chunks = int(re.match(".*epoch([0-9]+).*", args.load_state).group(1)) # Build data generators train_data_gen = utils.BatchGen(reader=train_reader, discretizer=discretizer, normalizer=normalizer, ihm_pos=args_dict['ihm_pos'], partition=args.partition, target_repl=target_repl, batch_size=args.batch_size, small_part=args.small_part, shuffle=True) val_data_gen = utils.BatchGen(reader=val_reader, discretizer=discretizer, normalizer=normalizer, ihm_pos=args_dict['ihm_pos'], partition=args.partition, target_repl=target_repl, batch_size=args.batch_size, small_part=args.small_part, shuffle=False) if args.mode == 'train':
normalizer_state) normalizer.load_params(normalizer_state) tf.logging.info(str(vars(conf))) tf.logging.info(str(args)) number_epoch = int(args['number_epoch']) batch_size = int(args['batch_size']) if args['mode'] in ['train', 'eval']: sp = True if args['mode'] == 'eval' else conf.small_part train_data_gen = mt_utils.BatchGen(reader=train_reader, discretizer=discretizer, normalizer=normalizer, batch_size=batch_size, shuffle=True, return_names=True, ihm_pos=48, partition='custom', target_repl=False, small_part=sp) eval_data_gen = mt_utils.BatchGen(reader=val_reader, discretizer=discretizer, normalizer=normalizer, batch_size=batch_size, shuffle=True, return_names=True, ihm_pos=48, partition='custom', target_repl=False, small_part=conf.small_part)