def query_factory(text_preparation_pipeline): """For creating queries""" return QueryFactory( text_preparation_pipeline=text_preparation_pipeline, system_entity_recognizer=None, duckling=True, )
def query_factory(tokenizer, preprocessor, stemmer, duckling): """For creating queries""" return QueryFactory( tokenizer=tokenizer, preprocessor=preprocessor, stemmer=stemmer, system_entity_recognizer=duckling, )
def english_paraphraser_retain_entities(kwik_e_mart_app_path, request): config = get_augmentation_config(app_path=kwik_e_mart_app_path) language = "en" config['augmentor_class'] = "EnglishParaphraser" config['retain_entities'] = True query_factory = QueryFactory.create_query_factory( app_path=kwik_e_mart_app_path, duckling=True) resource_loader = ResourceLoader.create_resource_loader( app_path=kwik_e_mart_app_path, query_factory=query_factory) request.cls.query_factory = query_factory request.cls.augmentor = AugmentorFactory( config=config, language=language, resource_loader=resource_loader, ).create_augmentor() yield None request.cls.augmentor = None request.cls.query_factor = None
def test_nlp_for_stemmed_queries(kwik_e_mart_nlp, query, stemmed_query): """Tests queries that are NOT in the training data but have their stemmed versions in the training data""" query_factory = QueryFactory.create_query_factory() stemmed_tokens = query_factory.create_query(text=query).stemmed_tokens assert stemmed_query == stemmed_tokens[0]
def query_factory(tokenizer, preprocessor): """For creating queries""" return QueryFactory(tokenizer=tokenizer, preprocessor=preprocessor)
def query_factory(tokenizer): """For creating queries""" return QueryFactory(tokenizer)
import os import shutil import pytest from mindmeld import markup from mindmeld.models import ENTITY_EXAMPLE_TYPE, ENTITIES_LABEL_TYPE, ModelFactory, ModelConfig from mindmeld.models.nn_utils.helpers import get_num_weights_of_model from mindmeld.query_factory import QueryFactory from mindmeld.resource_loader import ResourceLoader, ProcessedQueryList APP_NAME = "kwik_e_mart" APP_PATH = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), APP_NAME) GENERATED_TMP_FOLDER = os.path.join(APP_PATH, ".generated/pytorch_module") QUERY_FACTORY = QueryFactory.create_query_factory(app_path=None, duckling=True) @pytest.fixture def resource_loader(): """A resource loader""" return ResourceLoader(app_path=None, query_factory=QUERY_FACTORY) def model_predictions_assertions(model): """Conducts assertions on model predictions; common checks across multiple unittests""" predictions = model.predict([ markup.load_query("Medium Beers pizza from oz pizza", query_factory=QUERY_FACTORY).query ])[0] assert len(predictions) <= 6