def test_cifar_exception_file_path(): def exception_func(item): raise Exception("Error occur!") try: data = ds.Cifar10Dataset(DATA_DIR_10) data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1) num_rows = 0 for _ in data.create_dict_iterator(): num_rows += 1 assert False except RuntimeError as e: assert "map operation: [PyFunc] failed. The corresponding data files" in str(e) try: data = ds.Cifar10Dataset(DATA_DIR_10) data = data.map(operations=exception_func, input_columns=["label"], num_parallel_workers=1) num_rows = 0 for _ in data.create_dict_iterator(): num_rows += 1 assert False except RuntimeError as e: assert "map operation: [PyFunc] failed. The corresponding data files" in str(e) try: data = ds.Cifar100Dataset(DATA_DIR_100) data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1) num_rows = 0 for _ in data.create_dict_iterator(): num_rows += 1 assert False except RuntimeError as e: assert "map operation: [PyFunc] failed. The corresponding data files" in str(e) try: data = ds.Cifar100Dataset(DATA_DIR_100) data = data.map(operations=exception_func, input_columns=["coarse_label"], num_parallel_workers=1) num_rows = 0 for _ in data.create_dict_iterator(): num_rows += 1 assert False except RuntimeError as e: assert "map operation: [PyFunc] failed. The corresponding data files" in str(e) try: data = ds.Cifar100Dataset(DATA_DIR_100) data = data.map(operations=exception_func, input_columns=["fine_label"], num_parallel_workers=1) num_rows = 0 for _ in data.create_dict_iterator(): num_rows += 1 assert False except RuntimeError as e: assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
def test_cifar_usage(): """ test usage of cifar """ logger.info("Test Cifar100Dataset usage flag") # flag, if True, test cifar10 else test cifar100 def test_config(usage, flag=True, cifar_path=None): if cifar_path is None: cifar_path = DATA_DIR_10 if flag else DATA_DIR_100 try: data = ds.Cifar10Dataset(cifar_path, usage=usage) if flag else ds.Cifar100Dataset(cifar_path, usage=usage) num_rows = 0 for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True): num_rows += 1 except (ValueError, TypeError, RuntimeError) as e: return str(e) return num_rows # test the usage of CIFAR100 assert test_config("train") == 10000 assert test_config("all") == 10000 assert "usage is not within the valid set of ['train', 'test', 'all']" in test_config("invalid") assert "Argument usage with value ['list'] is not of type (<class 'str'>,)" in test_config(["list"]) assert "no valid data matching the dataset API Cifar10Dataset" in test_config("test") # test the usage of CIFAR10 assert test_config("test", False) == 10000 assert test_config("all", False) == 10000 assert "no valid data matching the dataset API Cifar100Dataset" in test_config("train", False) assert "usage is not within the valid set of ['train', 'test', 'all']" in test_config("invalid", False) # change this directory to the folder that contains all cifar10 files all_cifar10 = None if all_cifar10 is not None: assert test_config("train", True, all_cifar10) == 50000 assert test_config("test", True, all_cifar10) == 10000 assert test_config("all", True, all_cifar10) == 60000 assert ds.Cifar10Dataset(all_cifar10, usage="train").get_dataset_size() == 50000 assert ds.Cifar10Dataset(all_cifar10, usage="test").get_dataset_size() == 10000 assert ds.Cifar10Dataset(all_cifar10, usage="all").get_dataset_size() == 60000 # change this directory to the folder that contains all cifar100 files all_cifar100 = None if all_cifar100 is not None: assert test_config("train", False, all_cifar100) == 50000 assert test_config("test", False, all_cifar100) == 10000 assert test_config("all", False, all_cifar100) == 60000 assert ds.Cifar100Dataset(all_cifar100, usage="train").get_dataset_size() == 50000 assert ds.Cifar100Dataset(all_cifar100, usage="test").get_dataset_size() == 10000 assert ds.Cifar100Dataset(all_cifar100, usage="all").get_dataset_size() == 60000
def test_cifar100_basic(): """ Test Cifar100Dataset """ logger.info("Test Cifar100Dataset") # case 1: test num_samples data1 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100) num_iter1 = 0 for _ in data1.create_dict_iterator(num_epochs=1): num_iter1 += 1 assert num_iter1 == 100 # case 2: test repeat data1 = data1.repeat(2) num_iter2 = 0 for _ in data1.create_dict_iterator(num_epochs=1): num_iter2 += 1 assert num_iter2 == 200 # case 3: test num_parallel_workers data2 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100, num_parallel_workers=1) num_iter3 = 0 for _ in data2.create_dict_iterator(num_epochs=1): num_iter3 += 1 assert num_iter3 == 100 # case 4: test batch with drop_remainder=False data3 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100) assert data3.get_dataset_size() == 100 assert data3.get_batch_size() == 1 data3 = data3.batch(batch_size=3) assert data3.get_dataset_size() == 34 assert data3.get_batch_size() == 3 num_iter4 = 0 for _ in data3.create_dict_iterator(num_epochs=1): num_iter4 += 1 assert num_iter4 == 34 # case 4: test batch with drop_remainder=True data4 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100) data4 = data4.batch(batch_size=3, drop_remainder=True) assert data4.get_dataset_size() == 33 assert data4.get_batch_size() == 3 num_iter5 = 0 for _ in data4.create_dict_iterator(num_epochs=1): num_iter5 += 1 assert num_iter5 == 33
def vgg_create_dataset100(data_home, image_size, batch_size, rank_id=0, rank_size=1, repeat_num=1, training=True, num_samples=None, shuffle=True): """Data operations.""" ds.config.set_seed(1) data_dir = os.path.join(data_home, "train") if not training: data_dir = os.path.join(data_home, "test") if num_samples is not None: data_set = ds.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, num_samples=num_samples, shuffle=shuffle) else: data_set = ds.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id) input_columns = ["fine_label"] output_columns = ["label"] data_set = data_set.rename(input_columns=input_columns, output_columns=output_columns) data_set = data_set.project(["image", "label"]) rescale = 1.0 / 255.0 shift = 0.0 # define map operations random_crop_op = CV.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_horizontal_op = CV.RandomHorizontalFlip() resize_op = CV.Resize(image_size) # interpolation default BILINEAR rescale_op = CV.Rescale(rescale, shift) normalize_op = CV.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023)) changeswap_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) c_trans = [] if training: c_trans = [random_crop_op, random_horizontal_op] c_trans += [resize_op, rescale_op, normalize_op, changeswap_op] # apply map operations on images data_set = data_set.map(input_columns="label", operations=type_cast_op) data_set = data_set.map(input_columns="image", operations=c_trans) # apply shuffle operations data_set = data_set.shuffle(buffer_size=1000) # apply batch operations data_set = data_set.batch(batch_size=batch_size, drop_remainder=True) # apply repeat operations data_set = data_set.repeat(repeat_num) return data_set
def test_cifar10_dataset_size(): ds_total = ds.Cifar10Dataset(CIFAR10_DATA_DIR) assert ds_total.get_dataset_size() == 10000 # test get_dataset_size with usage flag train_size = ds.Cifar100Dataset(CIFAR100_DATA_DIR, usage="train").get_dataset_size() assert train_size == 0 train_size = ds.Cifar10Dataset(CIFAR10_DATA_DIR, usage="train").get_dataset_size() assert train_size == 10000 all_size = ds.Cifar10Dataset(CIFAR10_DATA_DIR, usage="all").get_dataset_size() assert all_size == 10000 ds_shard_1_0 = ds.Cifar10Dataset(CIFAR10_DATA_DIR, num_shards=1, shard_id=0) assert ds_shard_1_0.get_dataset_size() == 10000 ds_shard_2_0 = ds.Cifar10Dataset(CIFAR10_DATA_DIR, num_shards=2, shard_id=0) assert ds_shard_2_0.get_dataset_size() == 5000 ds_shard_3_0 = ds.Cifar10Dataset(CIFAR10_DATA_DIR, num_shards=3, shard_id=0) assert ds_shard_3_0.get_dataset_size() == 3334 ds_shard_7_0 = ds.Cifar10Dataset(CIFAR10_DATA_DIR, num_shards=7, shard_id=0) assert ds_shard_7_0.get_dataset_size() == 1429
def test_cifar100_visualize(plot=False): """ Visualize Cifar100Dataset results """ logger.info("Test Cifar100Dataset visualization") data1 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=10, shuffle=False) num_iter = 0 image_list, label_list = [], [] for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): image = item["image"] coarse_label = item["coarse_label"] fine_label = item["fine_label"] image_list.append(image) label_list.append("coarse_label {}\nfine_label {}".format( coarse_label, fine_label)) assert isinstance(image, np.ndarray) assert image.shape == (32, 32, 3) assert image.dtype == np.uint8 assert coarse_label.dtype == np.uint32 assert fine_label.dtype == np.uint32 num_iter += 1 assert num_iter == 10 if plot: visualize_dataset(image_list, label_list)
def test_cifar100_exception(): """ Test error cases for Cifar100Dataset """ logger.info("Test error cases for Cifar100Dataset") error_msg_1 = "sampler and shuffle cannot be specified at the same time" with pytest.raises(RuntimeError, match=error_msg_1): ds.Cifar100Dataset(DATA_DIR_100, shuffle=False, sampler=ds.PKSampler(3)) error_msg_2 = "sampler and sharding cannot be specified at the same time" with pytest.raises(RuntimeError, match=error_msg_2): ds.Cifar100Dataset(DATA_DIR_100, sampler=ds.PKSampler(3), num_shards=2, shard_id=0) error_msg_3 = "num_shards is specified and currently requires shard_id as well" with pytest.raises(RuntimeError, match=error_msg_3): ds.Cifar100Dataset(DATA_DIR_100, num_shards=10) error_msg_4 = "shard_id is specified but num_shards is not" with pytest.raises(RuntimeError, match=error_msg_4): ds.Cifar100Dataset(DATA_DIR_100, shard_id=0) error_msg_5 = "Input shard_id is not within the required interval" with pytest.raises(ValueError, match=error_msg_5): ds.Cifar100Dataset(DATA_DIR_100, num_shards=2, shard_id=-1) with pytest.raises(ValueError, match=error_msg_5): ds.Cifar10Dataset(DATA_DIR_100, num_shards=2, shard_id=5) error_msg_6 = "num_parallel_workers exceeds" with pytest.raises(ValueError, match=error_msg_6): ds.Cifar100Dataset(DATA_DIR_100, shuffle=False, num_parallel_workers=0) with pytest.raises(ValueError, match=error_msg_6): ds.Cifar100Dataset(DATA_DIR_100, shuffle=False, num_parallel_workers=88)
def test_cifar100_dataset_size(): ds_total = ds.Cifar100Dataset(CIFAR100_DATA_DIR) assert ds_total.get_dataset_size() == 10000 ds_shard_1_0 = ds.Cifar100Dataset(CIFAR100_DATA_DIR, num_shards=1, shard_id=0) assert ds_shard_1_0.get_dataset_size() == 10000 ds_shard_2_0 = ds.Cifar100Dataset(CIFAR100_DATA_DIR, num_shards=2, shard_id=0) assert ds_shard_2_0.get_dataset_size() == 5000 ds_shard_3_0 = ds.Cifar100Dataset(CIFAR100_DATA_DIR, num_shards=3, shard_id=0) assert ds_shard_3_0.get_dataset_size() == 3334
def test_cifar(): data = ds.Cifar10Dataset("../data/dataset/testCifar10Data") assert data.get_dataset_size() == 10000 data = ds.Cifar10Dataset("../data/dataset/testCifar10Data", num_samples=10) assert data.get_dataset_size() == 10 data = ds.Cifar10Dataset("../data/dataset/testCifar10Data", num_samples=90000) assert data.get_dataset_size() == 10000 data = ds.Cifar100Dataset("../data/dataset/testCifar100Data") assert data.get_dataset_size() == 10000 data = ds.Cifar100Dataset("../data/dataset/testCifar100Data", num_samples=10) assert data.get_dataset_size() == 10 data = ds.Cifar100Dataset("../data/dataset/testCifar100Data", num_samples=20000) assert data.get_dataset_size() == 10000
def test_config(usage, flag=True, cifar_path=None): if cifar_path is None: cifar_path = DATA_DIR_10 if flag else DATA_DIR_100 try: data = ds.Cifar10Dataset(cifar_path, usage=usage) if flag else ds.Cifar100Dataset(cifar_path, usage=usage) num_rows = 0 for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True): num_rows += 1 except (ValueError, TypeError, RuntimeError) as e: return str(e) return num_rows
def test_case_dataset_cifar100(): """ dataset parameter """ logger.info("Test dataset parameter") # apply dataset operations data1 = ds.Cifar100Dataset(DATA_DIR_100, 100) num_iter = 0 for _ in data1.create_dict_iterator(): # in this example, each dictionary has keys "image" and "label" num_iter += 1 assert num_iter == 100
def test_cifar100_pk_sampler(): """ Test Cifar100Dataset with PKSampler """ logger.info("Test Cifar100Dataset with PKSampler") golden = [i for i in range(20)] sampler = ds.PKSampler(1) data = ds.Cifar100Dataset(DATA_DIR_100, sampler=sampler) num_iter = 0 label_list = [] for item in data.create_dict_iterator(): label_list.append(item["coarse_label"]) num_iter += 1 np.testing.assert_array_equal(golden, label_list) assert num_iter == 20
def test_cifar100_content_check(): """ Validate Cifar100Dataset image readings """ logger.info("Test Cifar100Dataset with content check") data1 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100, shuffle=False) images, labels = load_cifar(DATA_DIR_100, kind="cifar100") num_iter = 0 # in this example, each dictionary has keys "image", "coarse_label" and "fine_image" for i, d in enumerate(data1.create_dict_iterator()): np.testing.assert_array_equal(d["image"], images[i]) np.testing.assert_array_equal(d["coarse_label"], labels[i][0]) np.testing.assert_array_equal(d["fine_label"], labels[i][1]) num_iter += 1 assert num_iter == 100
def sharding_config(num_shards, shard_id, num_samples, shuffle, repeat_cnt=1): data1 = ds.Cifar100Dataset(cifar100_dir, num_shards=num_shards, shard_id=shard_id, num_samples=num_samples, shuffle=shuffle) data1 = data1.repeat(repeat_cnt) res = [] for item in data1.create_dict_iterator(): # each data is a dictionary res.append(item["coarse_label"].item()) if print_res: logger.info("labels of dataset: {}".format(res)) return res
def test_get_column_name_cifar100(): data = ds.Cifar100Dataset(CIFAR100_DIR) assert data.get_col_names() == ["image", "coarse_label", "fine_label"]