def test_cache_nomap_basic2(): """ A random dataset (a non mappable dataset) with a cache over it just after the leaf """ logger.info("Test cache nomap basic 2") schema = ds.Schema() schema.add_column('image', de_type=mstype.uint8, shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image) schema.add_column('label', de_type=mstype.uint8, shape=[1]) # create a cache. arbitrary session_id for now some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True) # sampler arg not given directly, however any of these args will auto-generate an appropriate sampler: # num_samples, shuffle, num_shards, shard_id # In this case, the presence of num_samples chooses a sampler. ds1 = ds.RandomDataset(schema=schema, total_rows=20, num_samples=20, num_parallel_workers=4, cache=some_cache) ds1 = ds1.repeat(2) num_iter = 0 for data in ds1.create_dict_iterator(): logger.info("printing the label: {}".format(data["label"])) num_iter += 1 logger.info("Number of data in ds1: {} ".format(num_iter)) assert num_iter == 40 logger.info("test_cache_nomap_basic2 Ended.\n")
def test_cache_nomap_basic1(): """ A random dataset (a non mappable dataset) with a cache over it just after the leaf """ logger.info("Test cache nomap basic 1") schema = ds.Schema() schema.add_column('image', de_type=mstype.uint8, shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image) schema.add_column('label', de_type=mstype.uint8, shape=[1]) # create a cache. arbitrary session_id for now some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True) # User-created sampler here ds1 = ds.RandomDataset(schema=schema, total_rows=10, num_parallel_workers=4, cache=some_cache) ds1 = ds1.repeat(4) num_iter = 0 for data in ds1.create_dict_iterator(): logger.info("printing the label: {}".format(data["label"])) num_iter += 1 logger.info("Number of data in ds1: {} ".format(num_iter)) assert num_iter == 40 logger.info("test_cache_nomap_basic1 Ended.\n")
def test_randomdataset_basic2(): logger.info("Test randomdataset basic 2") schema = ds.Schema() schema.add_column( 'image', de_type=mstype.uint8, shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image) schema.add_column('label', de_type=mstype.uint8, shape=[1]) # Make up 10 rows ds1 = ds.RandomDataset(schema=schema, total_rows=10, num_parallel_workers=1) ds1 = ds1.repeat(4) num_iter = 0 for data in ds1.create_dict_iterator( num_epochs=1): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" # logger.info(data["image"]) logger.info("printing the label: {}".format(data["label"])) num_iter += 1 logger.info("Number of data in ds1: {}".format(num_iter)) assert num_iter == 40 logger.info("Test randomdataset basic 2 complete")
def test_randomdataset_basic2(): logger.info("Test randomdataset basic 2") schema = ds.Schema() schema.add_column( 'image', de_type=mstype.uint8, shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image) schema.add_column('label', de_type=mstype.uint8, shape=[1]) # Make up about 10 samples ds1 = ds.RandomDataset(schema=schema, num_samples=10, num_parallel_workers=1) # cache size allows for about 4 images since each image just a bit less than 1MB, after that we will have to spill ds1 = ds1.repeat(4) num_iter = 0 for data in ds1.create_dict_iterator(): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" #logger.info(data["image"]) logger.info("printing the label: {}".format(data["label"])) num_iter += 1 logger.info("Number of data in ds1: ", num_iter) assert (num_iter == 40)
def test_randomdataset_basic3(): logger.info("Test randomdataset basic 3") # Make up 10 samples, but here even the schema is randomly created # The columns are named like this "c0", "c1", "c2" etc # But, we will use a tuple iterator instead of dict iterator so the column names # are not needed to iterate ds1 = ds.RandomDataset(total_rows=10, num_parallel_workers=1) ds1 = ds1.repeat(2) num_iter = 0 for _ in ds1.create_tuple_iterator(num_epochs=1): num_iter += 1 logger.info("Number of data in ds1: {}".format(num_iter)) assert num_iter == 20 logger.info("Test randomdataset basic 3 Complete")
def test_randomdataset_basic1(): logger.info("Test randomdataset basic 1") schema = ds.Schema() schema.add_column('image', de_type=mstype.uint8, shape=[2]) schema.add_column('label', de_type=mstype.uint8, shape=[1]) # apply dataset operations ds1 = ds.RandomDataset(schema=schema, total_rows=50, num_parallel_workers=4) ds1 = ds1.repeat(4) num_iter = 0 for data in ds1.create_dict_iterator(): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" logger.info("{} image: {}".format(num_iter, data["image"])) logger.info("{} label: {}".format(num_iter, data["label"])) num_iter += 1 logger.info("Number of data in ds1: {}".format(num_iter)) assert num_iter == 200 logger.info("Test randomdataset basic 1 complete")