def test_softmax_relu_sigmoid(): """ Use python pass to transform from Softmax(x) to ReLU(Sigmoid(x)). NOTE: Sigmoid pattern only exists in the target. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_relu_pass(): x = Any() softmax_pattern = Prim(P.Softmax()) pattern = Call(softmax_pattern, [x]) sigmoid_pattern = Prim(P.Sigmoid()) call_sigmoid = Call(sigmoid_pattern, [x]) relu_pattern = Prim(P.ReLU()) target = Call(relu_pattern, [call_sigmoid]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(3) unregiste_pass(softmax_relu_pass) assert "ReLU" in transformed_repr assert "Sigmoid" in transformed_repr assert "Softmax" not in transformed_repr
def test_newparameter_pattern(): """ Test NewParameter pattern in the target """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() set_renorm(False) set_reopt(False) @registe_pass(requires_grad=False, run_only_once=True) def softmax_addn_pass(): x = Any() pattern = Call(P.Softmax(), [x]) default_tensor0 = Tensor(np.ones((4, 4)), mindspore.float32) default_tensor1 = Tensor(np.ones((4, 4)), mindspore.float32) new_para_0 = NewParameter("Merlin", default_tensor0) new_para_1 = NewParameter("Arthur", default_tensor1) target_0 = Call(P.MatMul(), [new_para_0, new_para_1]) target = Call("make_tuple", [target_0]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) unregiste_pass(softmax_addn_pass) assert "MatMul" in transformed_repr assert "make_tuple" in transformed_repr assert "Softmax" not in transformed_repr
def test_gen_new_parameter(): """ Test gen_new_parameter """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() default_tensor = Tensor(np.ones((4, 4)), mindspore.float32) new_para = NewParameter("Merlin", default_tensor) set_renorm(False) set_reopt(False) gen_new_parameter(new_para) @registe_pass(requires_grad=False, run_only_once=True) def softmax_make_tuple_pass(): x = Any() softmax = P.Softmax() pattern = Call(softmax, [x]) target = Call("make_tuple", [pattern, new_para]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) assert "Merlin" in transformed_repr unregiste_pass(softmax_make_tuple_pass) cancel_new_parameter(new_para) transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) assert "Merlin" not in transformed_repr
def test_imm_target(): """ Test NewParameter pattern in the target """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() set_renorm(False) set_reopt(False) @registe_pass(run_only_once=True) def softmax_pass(): x = Any() pattern = Call(P.Softmax(), [x]) imm = Imm(0) target_0 = Call("make_tuple", [pattern]) target = Call("tuple_getitem", [target_0, imm]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) unregiste_pass(softmax_pass) assert "make_tuple" in transformed_repr assert "tuple_getitem" in transformed_repr assert "Softmax" in transformed_repr
def test_isnot_pattern_1(): """ Test IsNot pattern which expresses the IsNot semantics. Case: IsNot pattern matches with the graph """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def single_bn_pass(): """ Sub a BN which does NOT take MatMul as inputs to ReLU6. """ matmul = Prim("MatMul") pattern_0 = NoneOf(matmul) softmax = P.Softmax() pattern = Call(softmax, [pattern_0]) relu6 = P.ReLU6() target = Call(relu6, [pattern_0]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) unregiste_pass(single_bn_pass) assert "ReLU6" in transformed_repr assert "Softmax" not in transformed_repr
def test_newtensor_pattern(): """ Test NewTensor pattern in the target """ set_renorm(False) set_reopt(False) inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_addn_pass(): x = Any() pattern = Call(P.Softmax(), [x]) weight_tensor = Tensor(np.zeros([42]), mindspore.float16) new_weight = NewTensor(weight_tensor) target = Call(P.AddN(), [x, new_weight]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2) unregiste_pass(softmax_addn_pass) assert "AddN" in transformed_repr assert "Softmax" not in transformed_repr set_renorm(True)
def test_isin_pattern_1(): """ Test IsIn. IsIn is used as nested inputs for the target in this case. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_neg_pass(): x = Any() softmax_pattern = Prim(P.Softmax()) call_softmax = Call(softmax_pattern, [x]) relu_pattern = Prim(P.ReLU()) call_relu = Call(relu_pattern, [x]) pattern = OneOf([call_softmax, call_relu]) neg_ops = Prim(P.Neg()) target = Call(neg_ops, [pattern]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(4) unregiste_pass(softmax_neg_pass) assert "Neg" in transformed_repr assert "Softmax" in transformed_repr
def test_isin_pattern_0(): """ Test IsIn pattern which expresses the IsIn/OneOf semantics. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_relu_pass(): x = Any() softmax_pattern = Prim(P.Softmax()) call_softmax = Call(softmax_pattern, [x]) relu_pattern = Prim(P.ReLU()) call_relu = Call(relu_pattern, [x]) pattern = OneOf([call_softmax, call_relu]) relu6_pattern = Prim(P.ReLU6()) target = Call(relu6_pattern, [x]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2) unregiste_pass(softmax_relu_pass) assert "ReLU6" in transformed_repr assert "Softmax" not in transformed_repr
def test_imm_pattern(): """ Test NewParameter pattern in the target """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_addn_pass(): x = AnyPattern() softmax = P.Softmax() pattern = CallWith(softmax, inputs=[x]) imm = Imm(0) target_0 = CallWith("make_tuple", inputs=[pattern], should_replace=False) target = CallWith("tuple_getitem", inputs=[target_0, imm], should_replace=False) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5) print(transformed_repr) unregiste_pass(softmax_addn_pass) assert "make_tuple" in transformed_repr assert "tuple_getitem" in transformed_repr assert "Softmax" in transformed_repr
def test_isnot_pattern_0(): """ Test IsNot pattern which expresses the IsNot semantics. Case: IsNot pass failed to match """ set_renorm(False) class ConvBN(nn.Cell): def __init__(self): super(ConvBN, self).__init__() self.conv = P.Conv2D(32, 3) self.conv_weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) self.scale = Tensor(np.ones([32]), mindspore.float32) self.bias = Tensor(np.ones([32]), mindspore.float32) self.mean = Tensor(np.ones([32]), mindspore.float32) self.variance = Tensor(np.ones([32]), mindspore.float32) self.bn = P.BatchNorm() def construct(self, x): x = self.conv(x, self.conv_weight) x = self.bn(x, self.scale, self.bias, self.mean, self.variance) return x inputs = Tensor(np.random.normal(0, 1, (10, 32, 32, 32)), mindspore.float32) conv_bn_model = ConvBN() @registe_pass(run_only_once=True) def single_bn_pass(): """ Sub a BN which does NOT take Conv as inputs to ReLU6. """ conv2d_prim = IsPrimTypeOf("Conv2D") conv2d = CallWith(conv2d_prim) pattern_0 = IsNot(conv2d) pattern = CallWith(P.BatchNorm(), inputs=[pattern_0]) target = CallWith(P.ReLU6(), inputs=[pattern_0]) return pattern, target @registe_pass(run_only_once=True) def bn_pass(): """ Sub a BN to Softmax. """ bn = P.BatchNorm() pattern = CallWith(bn) softmax = P.Softmax() target = CallWith(softmax, should_replace=False) return pattern, target transformed_repr = get_func_graph(conv_bn_model, inputs).get_return().expanded_str(5) unregiste_pass(single_bn_pass) unregiste_pass(bn_pass) assert "ReLU6" not in transformed_repr assert "Softmax" in transformed_repr set_renorm(True)
def test_prim(): inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_relu_pass(): x = Any() sigmoid_softmax_pattern = Prim([P.Sigmoid(), P.Softmax()]) pattern = Call(sigmoid_softmax_pattern, [x]) target = Call(P.ReLU(), [x]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(3) unregiste_pass(softmax_relu_pass) assert "ReLU" in transformed_repr assert "Softmax" not in transformed_repr
def test_softmax_relu(): """ Use python pass to transform from Softmax to ReLU. """ inputs = Tensor(np.ones([42]), mindspore.float16) softmax_model = nn.Softmax() @registe_pass(run_only_once=True) def softmax_relu_pass(): x = Any() pattern = Call(P.Softmax(), [x]) target = Call(P.ReLU(), [x]) return pattern, target transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2) unregiste_pass(softmax_relu_pass) assert "ReLU" in transformed_repr assert "Softmax" not in transformed_repr