"e2e_dump_settings": { "enable": True, "trans_flag": False } } with open("./data_dump.json", "w", encoding="GBK") as f: json.dump(data_dump, f) os.environ['MINDSPORE_DUMP_CONFIG'] = abspath + "/data_dump.json" def set_log_info(): os.environ['GLOG_v'] = '1' os.environ['GLOG_logtostderr'] = '1' os.environ['logger_maxBytes'] = '5242880' os.environ['GLOG_log_dir'] = 'D:/' if os.name == "nt" else '/var/log/mindspore' os.environ['logger_backupCount'] = '10' print(logger.get_log_config()) if __name__ == "__main__": set_dump_info() set_log_info() context.set_context(mode=context.GRAPH_MODE) train_dataset = create_train_dataset() eval_dataset = create_eval_dataset() net = Net() net_opt = Momentum(net.trainable_params(), 0.01, 0.9) net_loss = SoftmaxCrossEntropyWithLogits(reduction='mean') model = Model(network=net, loss_fn=net_loss, optimizer=net_opt, metrics={'Accuracy': nn.Accuracy()}) model.train(epoch=100, train_dataset=train_dataset, callbacks=[LossMonitor(), StopAtTime(3), SaveCallback(model, eval_dataset)])
help="set the eps of fgsm") args, _ = parser.parse_known_args() images = [] labels = [] test_images = [] test_labels = [] predict_labels = [] net = LeNet5() mnist_path = "./datasets/MNIST_Data/" param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt") load_param_into_net(net, param_dict) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) model = Model(net, net_loss, net_opt, metrics={"Accuracy": nn.Accuracy()}) ds_test = create_dataset(os.path.join(mnist_path, "test"), batch_size=32).create_dict_iterator(output_numpy=True) for data in ds_test: images = data['image'].astype(np.float32) labels = data['label'] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), axis=1) predict_labels.append(pred_labels) test_images = np.concatenate(test_images) predict_labels = np.concatenate(predict_labels) true_labels = np.concatenate(test_labels)
def set_log_info(): os.environ['GLOG_v'] = '1' os.environ['GLOG_logtostderr'] = '1' os.environ['logger_maxBytes'] = '5242880' os.environ[ 'GLOG_log_dir'] = 'D:/' if os.name == "nt" else '/var/log/mindspore' os.environ['logger_backupCount'] = '10' print(logger.get_log_config()) if __name__ == "__main__": set_dump_info() set_log_info() context.set_context(mode=context.GRAPH_MODE) train_dataset = create_train_dataset() eval_dataset = create_eval_dataset() net = Net() net_opt = Momentum(net.trainable_params(), 0.01, 0.9) net_loss = SoftmaxCrossEntropyWithLogits(reduction='mean') model = Model(network=net, loss_fn=net_loss, optimizer=net_opt, metrics={'Accuracy': nn.Accuracy()}) model.train(epoch=100, train_dataset=train_dataset, callbacks=[ LossMonitor(), StopAtTime(3), SaveCallback(model, eval_dataset) ])
""" import mindspore.nn as nn from mindspore.nn import Momentum, SoftmaxCrossEntropyWithLogits from mindspore import Model, context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from src.dataset import create_train_dataset, create_eval_dataset from src.net import Net if __name__ == "__main__": context.set_context(mode=context.GRAPH_MODE) ds_train = create_train_dataset() ds_eval = create_eval_dataset() net = Net() net_opt = Momentum(net.trainable_params(), 0.01, 0.9) net_loss = SoftmaxCrossEntropyWithLogits(reduction='mean') metrics = { 'Accuracy': nn.Accuracy(), 'Loss': nn.Loss(), 'Precision': nn.Precision(), 'Recall': nn.Recall(), 'F1_score': nn.F1() } config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10) ckpoint = ModelCheckpoint(prefix="CKPT", config=config_ck) model = Model(network=net, loss_fn=net_loss, optimizer=net_opt, metrics=metrics) model.train(epoch=2, train_dataset=ds_train, callbacks=[ckpoint, LossMonitor()]) result = model.eval(ds_eval) print(result)