예제 #1
0
def test_parameter_update_int32_and_tensor():
    """ test_parameter_update """
    net = Net()
    loss = nn.SoftmaxCrossEntropyWithLogits()
    optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001)

    net_with_loss = WithLossCell(net, loss)
    train_network = TrainOneStepCell(net_with_loss, optimizer)

    # compile train graph
    train_network.set_train()
    inputs = Tensor(np.ones([1, 64]).astype(np.float32))
    label = Tensor(np.zeros([1, 10]).astype(np.float32))
    _executor.compile(train_network, inputs, label)

    # test tensor
    param_lr = train_network.parameters_dict()['learning_rate']
    update_network = ParameterUpdate(param_lr)
    update_network.phase = 'update_param'

    input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32)
    _executor.compile(update_network, input_lr)

    # test int32
    param_step = train_network.parameters_dict()['global_step']
    update_global_step = ParameterUpdate(param_step)

    input_step = Tensor(np.array([1000]), mstype.int32)
    _executor.compile(update_global_step, input_step)
예제 #2
0
def test_parameter_update_float32():
    """ test_parameter_update """
    net = Net()
    loss = nn.SoftmaxCrossEntropyWithLogits()
    optimizer = Momentum(net.get_parameters(), 0.01, 0.001)

    net_with_loss = WithLossCell(net, loss)
    train_network = TrainOneStepCell(net_with_loss, optimizer)

    # compile train graph
    train_network.set_train()
    inputs = Tensor(np.ones([1, 64]).astype(np.float32))
    label = Tensor(np.zeros([1, 10]).astype(np.float32))
    _executor.compile(train_network, inputs, label)

    # construct and compile update graph
    param_lr = train_network.parameters_dict()['learning_rate']
    update_network = ParameterUpdate(param_lr)
    update_network.phase = 'update_param'

    input_lr = Tensor(0.0001, mstype.float32)
    _executor.compile(update_network, input_lr)