def test_parameter_update_int32_and_tensor(): """ test_parameter_update """ net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) # compile train graph train_network.set_train() inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) _executor.compile(train_network, inputs, label) # test tensor param_lr = train_network.parameters_dict()['learning_rate'] update_network = ParameterUpdate(param_lr) update_network.phase = 'update_param' input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32) _executor.compile(update_network, input_lr) # test int32 param_step = train_network.parameters_dict()['global_step'] update_global_step = ParameterUpdate(param_step) input_step = Tensor(np.array([1000]), mstype.int32) _executor.compile(update_global_step, input_step)
def test_parameter_update_float32(): """ test_parameter_update """ net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(net.get_parameters(), 0.01, 0.001) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) # compile train graph train_network.set_train() inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) _executor.compile(train_network, inputs, label) # construct and compile update graph param_lr = train_network.parameters_dict()['learning_rate'] update_network = ParameterUpdate(param_lr) update_network.phase = 'update_param' input_lr = Tensor(0.0001, mstype.float32) _executor.compile(update_network, input_lr)