def __init__(self): super(MatMulNet, self).__init__() self.matmul = P.MatMul() self.biasAdd = P.BiasAdd()
def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.logicalnot = P.LogicalNot().set_strategy(strategy2) self.equal = P.Equal().set_strategy(strategy3)
def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.pow = P.Pow().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1)
def __init__(self, strategy0, strategy1, strategy2, strategy3): super().__init__() self.virtual_dataset = _VirtualDataset().set_strategy(strategy0) self.matmul1 = P.MatMul().set_strategy(strategy1) self.matmul2 = P.MatMul().set_strategy(strategy2) self.gelu = P.Gelu().set_strategy(strategy3)
def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.prelu = P.PReLU().set_strategy(strategy2)
def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name='weight') self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name='bias') self.matmul = P.MatMul() self.biasAdd = P.BiasAdd()
def __init__(self, strategy0, strategy1): super().__init__() self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) self.reduce_sum = P.ReduceSum(keep_dims=False).shard(strategy1)
def __init__(self, strategy1=None, strategy2=None): super().__init__() self.dropout = P.Dropout(keep_prob=0.6).shard(strategy1) self.matmul = P.MatMul().shard(strategy2)
# See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.ops.functional as F from mindspore.common import dtype as mstype from mindspore.common.tensor import Tensor from mindspore.ops import composite as C from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE) add1 = P.TensorAdd() mul1 = P.MatMul() add2 = P.TensorAdd() def add(x, y): return add1(x, y) class Func(nn.Cell): def __init__(self): super(Func, self).__init__() self.alloc_status = P.NPUAllocFloatStatus() self.get_status = P.NPUGetFloatStatus() self.clear_status = P.NPUClearFloatStatus() def construct(self, x, y):
def __init__(self): super().__init__() self.matmul1 = P.MatMul(transpose_b=True) self.matmul2 = P.MatMul()
def __init__(self): super().__init__() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() self.transpose1 = P.Transpose() self.transpose2 = P.Transpose()
def __init__(self, strategy1, strategy2, weight, weight2): super().__init__() self.weight = Parameter(weight, "w1", requires_grad=True) self.weight2 = Parameter(weight2, "w2", requires_grad=True) self.matmul = P.MatMul().set_strategy(strategy1) self.matmul2 = P.MatMul().set_strategy(strategy2)
def __init__(self, args, strategy): super(SemiAutoOneHotNet, self).__init__() self.a = args.a self.b = args.b self.c = args.c self.d = args.d self.e = args.e self.cast = P.Cast() self.cast.set_strategy(strategy=strategy.twod_strategy) self.cast1 = P.Cast() self.cast1.set_strategy(strategy=strategy.twod_strategy) self.cast2 = P.Cast() self.cast2.set_strategy(strategy=strategy.twod_strategy) self.cast3 = P.Cast() self.cast3.set_strategy(strategy=strategy.scalar_strategy) self.cast4 = P.Cast() self.cast4.set_strategy(strategy=strategy.scalar_strategy) self.a_const = Tensor(self.a, dtype=mstype.float32) self.b_const = Tensor(self.b, dtype=mstype.float32) self.c_const = Tensor(self.c, dtype=mstype.float32) self.d_const = Tensor(self.d, dtype=mstype.float32) self.e_const = Tensor(self.e, dtype=mstype.float32) self.m_const_zero = Tensor(0, dtype=mstype.float32) self.a_const_one = Tensor(1, dtype=mstype.float32) self.onehot = P.OneHot() self.onehot.set_strategy(strategy=strategy.onehot_strategy) self.exp = P.Exp() self.exp.set_strategy(strategy=strategy.twod_strategy) self.exp2 = P.Exp() self.exp2.set_strategy(strategy=strategy.twod_strategy) self.exp3 = P.Exp() self.exp3.set_strategy(strategy=strategy.twod_strategy) self.mul_const = P.Mul() self.mul_const.set_strategy(strategy=strategy.scalar_twod_strategy) self.mul_const2 = P.TensorAdd() self.mul_const2.set_strategy(strategy=strategy.scalar_twod_strategy) self.mul_const3 = P.Sub() self.mul_const3.set_strategy(strategy=strategy.twod_scalar_strategy) self.mul_const4 = P.Sub() self.mul_const4.set_strategy(strategy=strategy.scalar_twod_strategy) self.mul_const5 = P.Mul() self.mul_const5.set_strategy(strategy=strategy.twod_scalar_strategy) self.mul = P.Mul() self.mul.set_strategy(strategy=strategy.twod_twod_strategy) self.mul2 = P.Mul() self.mul2.set_strategy(strategy=strategy.twod_twod_strategy) self.mul3 = P.TensorAdd() self.mul3.set_strategy(strategy=strategy.twod_twod_strategy) self.mul4 = P.Sub() self.mul4.set_strategy(strategy=strategy.twod_twodbc_strategy) self.mul5 = P.RealDiv() self.mul5.set_strategy(strategy=strategy.twod_twodbc_strategy) self.mul6 = P.Mul() self.mul6.set_strategy(strategy=strategy.twod_twod_strategy) self.mul7 = P.Mul() self.mul7.set_strategy(strategy=strategy.twod_scalar_strategy) self.mul8 = P.RealDiv() self.mul8.set_strategy(strategy=strategy.scalar_scalar_strategy) self.mul9 = P.TensorAdd() self.mul9.set_strategy(strategy=strategy.twod_scalar_strategy) self.reduce_max = P.ReduceMax(keep_dims=True) self.reduce_max.set_strategy(strategy=strategy.twod_strategy) self.reduce_sum = P.ReduceSum(keep_dims=False) self.reduce_sum.set_strategy(strategy=strategy.twod_strategy) self.reduce_sum_2 = P.ReduceSum(keep_dims=False) self.reduce_sum_2.set_strategy(strategy=strategy.twod_strategy) self.reduce_sum_3 = P.ReduceSum(keep_dims=False) self.reduce_sum_3.set_strategy(strategy=strategy.oned_strategy) self.reshape = P.Reshape() self.log = P.Log() self.log.set_strategy(strategy=strategy.twod_strategy) self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.normalize = P.L2Normalize(axis=1) self.normalize.set_strategy(strategy=strategy.twod_strategy_m) self.normalize2 = P.L2Normalize(axis=1) self.normalize2.set_strategy(strategy=strategy.twod_strategy_m) self.fc = P.MatMul(transpose_b=True) self.fc.set_strategy(strategy=strategy.twodbc_twod_strategy) weight_shape = [args.num_classes, args.emb_size] weight_np = np.zeros(weight_shape, np.float32) self.weight = Parameter(Tensor(weight_np), name='model_parallel_weight')
def __init__(self): super(NetWithoutWeight, self).__init__() self.matmul = P.MatMul()
def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul(transpose_b=True).shard(strategy1) self.gelu = P.Gelu().shard(strategy2)
def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0, loss_scale=1.0, use_nesterov=False, decay_filter=lambda x: x.name not in []): super(THOR_GPU, self).__init__(learning_rate, params, weight_decay, loss_scale) validator.check_value_type("momentum", momentum, [float], self.cls_name) if isinstance(momentum, float) and momentum < 0.0: raise ValueError( "momentum should be at least 0.0, but got momentum {}".format( momentum)) self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum") self.params = self.parameters self.use_nesterov = check_bool(use_nesterov) self.moments = self.params.clone(prefix="moments", init='zeros') self.hyper_map = C.HyperMap() self.opt = _selected_ops.ApplyMomentum(use_nesterov=self.use_nesterov) self.feature_map = [ 1.0 / 12544, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 ] self.feature_map_new = [x**0.5 for x in self.feature_map] self.transpose = P.Transpose() self.shape = P.Shape() self.reshape = P.Reshape() self.matmul = P.MatMul() self.matrix_A = ParameterTuple(matrix_A) self.matrix_G = ParameterTuple(matrix_G) self.A_inv_max = ParameterTuple(A_inv_max) self.G_inv_max = ParameterTuple(G_inv_max) self.assign = P.Assign() self.mul = P.Mul() mean = _get_gradients_mean() degree = _get_device_num() parameter_length = len(self.feature_map) self.grad_reducer_thorA = DistributedGradReducerThor( parameter_length, ((parameter_length, ), 0), mean, degree) self.grad_reducer_thorG = DistributedGradReducerThor( parameter_length, ((parameter_length, ), 0), mean, degree) self.weight_decay = weight_decay self.decay_flags = tuple(decay_filter(x) for x in self.parameters) self.update_gradient = P.UpdateThorGradient(split_dim=128)
def __init__(self, strategy1): super().__init__() self.matmul1 = P.MatMul().set_strategy(strategy1) self.weight = Parameter(Tensor(np.ones([512, 256]).astype(np.float32) * 0.01), "w", requires_grad=True) self.matmul2 = P.MatMul()
def __init__(self, strategy1, strategy2, weight): super().__init__() self.weight = Parameter(weight, "w1") self.matmul = P.MatMul(transpose_a=False, transpose_b=True).set_strategy(strategy1) self.relu = P.ReLU().set_strategy(strategy2)
def __init__(self): super().__init__() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() self.matmul3 = P.MatMul()
def __init__(self, strategy0, strategy1, strategy2): super(ReshapeNet, self).__init__() self.relu = P.ReLU().shard(strategy0) self.reshape = P.Reshape().shard(strategy1) self.matmul = P.MatMul().shard(strategy2) self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2)
def __init__(self): super(MEGeluLargeIn, self).__init__() self.matmul = P.MatMul() self.fast_gelu = P.GeLU()
('FloorDiv', { 'block': P.FloorDiv(), 'desc_inputs': [ Tensor(np.random.rand(4).astype(np.float16)), Tensor(np.random.rand(4).astype(np.float16)) ], 'skip': ['backward'] }), ('identity', { 'block': ops.functional.identity, 'desc_inputs': [[2, 2]], 'skip': ['backward'] }), ('MatMul_1', { 'block': P.MatMul(transpose_a=False, transpose_b=False), 'desc_inputs': [[1024, 160], [160, 1024]], 'desc_bprop': [[1024, 1024]] }), ('MatMul_2', { 'block': P.MatMul(transpose_a=True, transpose_b=True), 'desc_inputs': [[160, 1024], [1024, 160]], 'desc_bprop': [[1024, 1024]] }), ('Sub', { 'block': P.Sub(), 'desc_inputs': [[3], [3]], 'desc_bprop': [[3]] }), ('TruncatedNormal', { 'block': P.TruncatedNormal(),
def __init__(self): super().__init__() self.matmul1 = P.MatMul() self.dropout = nn.Dropout() self.matmul2 = P.MatMul()
def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.log = P.Log().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1)
def __init__(self, transpose_a=False, transpose_b=False): super(CustomMatMul, self).__init__() self.fc = P.MatMul(transpose_a=transpose_a, transpose_b=transpose_b)
def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast()
def __init__(self): super().__init__() self.matmul = P.MatMul(transpose_b=True) self.gelu = P.Gelu()
def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.exp = P.Exp().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1)
def __init__(self): super(AllToAllNet, self).__init__() self.matmul = P.MatMul() self.matmul_weight = Parameter(Tensor(np.ones([128, 32]), dtype=ms.float32), name="weight") self.transpose1 = P.Transpose()