def __init__(self, network, optimizer, sens=1.0): super(TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = None self._tuple_add = _TupleAdd() self._tuple_mul = _TupleMul() parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_gradients_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.do_privacy = False self.grad_mask_tup = () # tuple containing grad_mask(cell) self.de_weight_tup = () # tuple containing de_weight(cell) self._suppress_pri_ctrl = None
def __init__(self, network, optimizer, sens=1.0): super(TrainOneStepCellWithGradClip, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = None self.hyper_map = C.HyperMap() self.greater = P.Greater() self.select = P.Select() self.norm = nn.Norm(keep_dims=True) self.dtype = P.DType() self.cast = P.Cast() self.concat = P.Concat(axis=0) self.ten = Tensor(np.array([10.0]).astype(np.float32)) parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree)
def __init__(self, network, optimizer, scale_update_cell=None): super(TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.hyper_map = C.HyperMap() self.alloc_status = NPUAllocFloatStatus() self.get_status = NPUGetFloatStatus() self.clear_status = NPUClearFloatStatus() self.reduce_sum = ReduceSum(keep_dims=False) self.base = Tensor(1, mstype.float32) self.less_equal = LessEqual() self.depend_parameter_use = ControlDepend(depend_mode=1) self.allreduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() self.grad_reducer = None self.reducer_flag = self.parallel_mode in [ ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL ] if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = self.parallel_mode != ParallelMode.STAND_ALONE self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor( scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") self.add_flags(has_effect=True)
def _process_vocab_cache(self, slice_mode): """PS embeddingLookup cache check and process.""" self.cache_enable = False if self.vocab_cache_size > 0: if self.target == 'CPU': logger.warning("The configuration of 'vocab_cache_size' is valid only in 'DEVICE' target, " "current target is CPU, so it will be ignored.") return enable_ps = _get_ps_context("enable_ps") if not enable_ps: logger.warning("The configuration of 'vocab_cache_size' is valid only in parameter server trainning " "mode, current mode is not parameter server trainning mode, so it will be ignored.") return parallel_mode = _get_parallel_mode() is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) if is_auto_parallel: device_num = get_group_size() full_batch = _get_full_batch() if device_num > 1 and not (full_batch and slice_mode == "table_row_slice"): raise ValueError("The embeddingLookup cache of parameter server parallel only be used " "in 'full_batch' and 'table_row_slice' parallel strategy.") self.vocab_cache_size = self.vocab_cache_size * device_num self.cache_enable = True if _is_role_worker(): self.vocab_size = self.vocab_cache_size
def __init__(self, network, total_steps=1, sens=16384.0): super(TrainStepWrap, self).__init__(auto_prefix=False) self.network = network self.network.set_train() self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) lr = dynamic_lr(0.01, total_steps, 5000) self.optimizer = nn.Adam(self.weights, learning_rate=lr, beta1=0.9, beta2=0.999, eps=1e-8, loss_scale=sens) self.hyper_map = C.HyperMap() self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = None parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_gradients_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer( self.optimizer.parameters, mean, degree)
def __init__(self, network, optimizer, sens=1.0, micro_batches=None, norm_clip=1.0, mech=None): super(_TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = None parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) # dp params self._micro_batches = micro_batches norm_clip = check_param_type('norm_clip', norm_clip, float) self._l2_norm = check_value_positive('norm_clip', norm_clip) self._split = P.Split(0, self._micro_batches) self._clip_by_global_norm = _ClipGradients() self._mech = mech self._tuple_add = _TupleAdd() self._hyper_map = C.HyperMap() self._micro_float = Tensor(micro_batches, mstype.float32)
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, eval_indexes=None, amp_level="O0", frequency=278, stop_epoch=100, **kwargs): self._network = network self._loss_fn = loss_fn self._optimizer = optimizer self._loss_scale_manager = None self._loss_scale_manager_set = False self._keep_bn_fp32 = True self._check_kwargs(kwargs) self._amp_level = amp_level self._process_amp_args(kwargs) self._parallel_mode = _get_parallel_mode() self._device_number = _get_device_num() self._global_rank = _get_global_rank() self._parameter_broadcast = _get_parameter_broadcast() self._frequency = frequency self._stop_epoch = stop_epoch self._train_network = self._build_train_network() self._build_eval_network(metrics, eval_network, eval_indexes) self._build_predict_network()
def _process_vocab_cache(self, slice_mode): """PS embeddingLookup cache check and process.""" self.cache_enable = False if self.vocab_cache_size > 0: if self.target == 'CPU': logger.warning("The configuration of 'vocab_cache_size' is valid only in 'DEVICE' target, " "current target is CPU, so it will be ignored.") return enable_ps = _get_ps_context("enable_ps") if not enable_ps: logger.warning("The configuration of 'vocab_cache_size' is valid only in parameter server trainning " "mode, current mode is not parameter server trainning mode, so it will be ignored.") return parallel_mode = _get_parallel_mode() is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) if is_auto_parallel: rank_size = get_group_size() rank_id = get_rank() full_batch = _get_full_batch() if rank_size > 1 and not (full_batch and slice_mode == "table_row_slice"): raise ValueError("The embeddingLookup cache of parameter server parallel only be used " "in 'full_batch' and 'table_row_slice' parallel strategy.") self.vocab_cache_size = self.vocab_cache_size * rank_size _set_rank_id(rank_id) self.cache_enable = True if _is_role_worker(): self.vocab_size = self.vocab_cache_size if context.get_context("enable_sparse") != self.sparse: raise ValueError("The value of parameter 'sparse' must be same for all EmbeddingLookup " "kernels and equal the value of 'enable_sparse' in context setting in " "parameter server cache mode")
def __init__(self, config): super(WideDeepModel, self).__init__() self.batch_size = config.batch_size parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): self.batch_size = self.batch_size * get_group_size() self.field_size = config.field_size self.vocab_size = config.vocab_size self.emb_dim = config.emb_dim self.deep_layer_dims_list = config.deep_layer_dim self.deep_layer_act = config.deep_layer_act self.init_args = config.init_args self.weight_init, self.bias_init = config.weight_bias_init self.weight_bias_init = config.weight_bias_init self.emb_init = config.emb_init self.drop_out = config.dropout_flag self.keep_prob = config.keep_prob self.deep_input_dims = self.field_size * self.emb_dim self.layer_dims = self.deep_layer_dims_list + [1] self.all_dim_list = [self.deep_input_dims] + self.layer_dims init_acts = [('Wide_w', [self.vocab_size, 1], self.emb_init), ('V_l2', [self.vocab_size, self.emb_dim], self.emb_init), ('Wide_b', [1], self.emb_init)] var_map = init_var_dict(self.init_args, init_acts) self.wide_w = var_map["Wide_w"] self.wide_b = var_map["Wide_b"] self.embedding_table = var_map["V_l2"] self.dense_layer_1 = DenseLayer(self.all_dim_list[0], self.all_dim_list[1], self.weight_bias_init, self.deep_layer_act, convert_dtype=True) self.dense_layer_2 = DenseLayer(self.all_dim_list[1], self.all_dim_list[2], self.weight_bias_init, self.deep_layer_act, convert_dtype=True) self.dense_layer_3 = DenseLayer(self.all_dim_list[2], self.all_dim_list[3], self.weight_bias_init, self.deep_layer_act, convert_dtype=True) self.dense_layer_4 = DenseLayer(self.all_dim_list[3], self.all_dim_list[4], self.weight_bias_init, self.deep_layer_act, convert_dtype=True) self.dense_layer_5 = DenseLayer(self.all_dim_list[4], self.all_dim_list[5], self.weight_bias_init, self.deep_layer_act, convert_dtype=True) self.gather_v2 = P.GatherV2().set_strategy(((1, 8), (1, 1))) self.gather_v2_1 = P.GatherV2() self.mul = P.Mul() self.reduce_sum = P.ReduceSum(keep_dims=False) self.reshape = P.Reshape() self.square = P.Square() self.shape = P.Shape() self.tile = P.Tile() self.concat = P.Concat(axis=1) self.cast = P.Cast()
def __init__(self, vocab_size, embedding_size, param_init='normal', target='CPU', slice_mode='batch_slice', manual_shapes=None): super(EmbeddingLookup, self).__init__() self.target = target if target not in ('CPU', 'DEVICE'): raise ValueError( 'Attr \'target\' of \'EmbeddingLookup\' Op passed ' + str(target) + ', should be one of values in \'CPU\', \'DEVICE\'.') self.gatherv2 = P.GatherV2() self.embeddinglookup = P.EmbeddingLookup().add_prim_attr( 'primitive_target', 'CPU') self.embedding_table = Parameter(initializer( param_init, [vocab_size, embedding_size]), name='embedding_table') parallel_mode = _get_parallel_mode() is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) if slice_mode == EmbeddingLookUpSplitMode.FIELD_SLICE and is_auto_parallel: if not manual_shapes: raise ValueError( "in slice field mode, the manual_shapes should not be none" ) if not isinstance(manual_shapes, tuple): raise TypeError( "manual_shapes type must be tuple(int) cannot be {}!". format(type(manual_shapes))) for dim in manual_shapes: Validator.check_integer('manul shape dim', dim, 0, Rel.GT, self.cls_name) self.gatherv2.add_prim_attr("manual_split", manual_shapes) self.embeddinglookup.add_prim_attr("manual_split", manual_shapes) self.gatherv2.set_strategy( ((get_group_size(), 1), (1, get_group_size()))) self.embeddinglookup.set_strategy( ((get_group_size(), 1), (1, get_group_size()))) elif slice_mode == EmbeddingLookUpSplitMode.TABLE_ROW_SLICE and is_auto_parallel: self.gatherv2.set_strategy(((get_group_size(), 1), (1, 1))) self.embeddinglookup.set_strategy(((get_group_size(), 1), (1, 1))) elif slice_mode == EmbeddingLookUpSplitMode.TABLE_COLUMN_SLICE and is_auto_parallel: self.gatherv2.set_strategy(((1, get_group_size()), (1, 1))) self.embeddinglookup.set_strategy(((1, get_group_size()), (1, 1))) elif slice_mode == EmbeddingLookUpSplitMode.BATCH_SLICE and is_auto_parallel: self.gatherv2.set_strategy(((1, 1), (get_group_size(), 1))) self.embeddinglookup.set_strategy(((1, 1), (get_group_size(), 1))) else: if is_auto_parallel: raise ValueError( "slice_mode should support mode in nn.EmbeddingLookUpSplitMode, but get " + str(slice_mode))
def __init__(self, network, config, sens=1000.0): super(TrainStepWrap, self).__init__() self.network = network self.network.set_train() self.trainable_params = network.trainable_params() weights_w = [] weights_d = [] for params in self.trainable_params: if 'wide' in params.name: weights_w.append(params) else: weights_d.append(params) self.weights_w = ParameterTuple(weights_w) self.weights_d = ParameterTuple(weights_d) self.optimizer_w = FTRL(learning_rate=config.ftrl_lr, params=self.weights_w, l1=5e-4, l2=5e-4, initial_accum=0.1, loss_scale=sens) #self.optimizer_d = ProximalAdagrad(self.weights_d, learning_rate=config.adam_lr,loss_scale=sens) self.optimizer_d = Adam(self.weights_d, learning_rate=config.adam_lr, eps=1e-6, loss_scale=sens) self.hyper_map = C.HyperMap() self.grad_w = C.GradOperation('grad_w', get_by_list=True, sens_param=True) self.grad_d = C.GradOperation('grad_d', get_by_list=True, sens_param=True) self.sens = sens self.loss_net_w = IthOutputCell(network, output_index=0) self.loss_net_d = IthOutputCell(network, output_index=1) self.reducer_flag = False self.grad_reducer_w = None self.grad_reducer_d = None parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer_w = DistributedGradReducer( self.optimizer_w.parameters, mean, degree) self.grad_reducer_d = DistributedGradReducer( self.optimizer_d.parameters, mean, degree)
def _amp_build_train_network(self, network, optimizer, loss_fn=None, level='O0', **kwargs): """ Build the mixed precision training cell automatically. Args: network (Cell): Definition of the network. loss_fn (Union[None, Cell]): Definition of the loss_fn. If None, the `network` should have the loss inside. Default: None. optimizer (Optimizer): Optimizer to update the Parameter. level (str): Supports [O0, O2]. Default: "O0". - O0: Do not change. - O2: Cast network to float16, keep batchnorm and `loss_fn` (if set) run in float32, using dynamic loss scale. cast_model_type (:class:`mindspore.dtype`): Supports `mstype.float16` or `mstype.float32`. If set to `mstype.float16`, use `float16` mode to train. If set, overwrite the level setting. keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32`. If set, overwrite the level setting. loss_scale_manager (Union[None, LossScaleManager]): If None, not scale the loss, or else scale the loss by LossScaleManager. If set, overwrite the level setting. """ validator.check_value_type('network', network, nn.Cell, None) validator.check_value_type('optimizer', optimizer, nn.Optimizer, None) validator.check('level', level, "", ['O0', 'O2'], Rel.IN, None) self._check_kwargs(kwargs) config = dict(_config_level[level], **kwargs) config = edict(config) if config.cast_model_type == mstype.float16: network.to_float(mstype.float16) if config.keep_batchnorm_fp32: _do_keep_batchnorm_fp32(network) if loss_fn: network = _add_loss_network(network, loss_fn, config.cast_model_type) if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): network = _VirtualDatasetCell(network) loss_scale = 1.0 if config.loss_scale_manager is not None: print("----model config have loss scale manager !") network = TrainOneStepCell(network, optimizer, sens=loss_scale).set_train() return network
def __init__(self, network, optimizer, scale_update_cell=None): super(TransformerTrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.reducer_flag = False self.all_reduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() if self.parallel_mode not in ParallelMode.MODE_LIST: raise ValueError("Parallel mode does not support: ", self.parallel_mode) if self.parallel_mode in [ ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL ]: self.reducer_flag = True self.grad_reducer = None if self.reducer_flag: mean = _get_gradients_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE) self.clip_gradients = ClipGradients() self.cast = P.Cast() if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.gpu_target = False self.alloc_status = P.NPUAllocFloatStatus() self.get_status = P.NPUGetFloatStatus() self.clear_status = P.NPUClearFloatStatus() self.reduce_sum = P.ReduceSum(keep_dims=False) self.depend_parameter_use = P.ControlDepend(depend_mode=1) self.base = Tensor(1, mstype.float32) self.less_equal = P.LessEqual() self.hyper_map = C.HyperMap() self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter( Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32)) self.add_flags(has_effect=True)
def _use_parallel_optimizer(self): """Indicates whether to use automatic parallelism.""" if context.get_auto_parallel_context("enable_parallel_optimizer"): if _get_parallel_mode( ) == ParallelMode.DATA_PARALLEL and context.get_context( "device_target") == "Ascend": self.use_parallel = True elif _get_parallel_mode() == ParallelMode.DATA_PARALLEL \ and context.get_context("device_target") != "Ascend": raise RuntimeError( "Parallel optimizer only supports Ascend in data parallel mode." ) elif _get_parallel_mode() in (ParallelMode.STAND_ALONE, ParallelMode.HYBRID_PARALLEL): raise RuntimeError( "Parallel optimizer is not supported in {}.".format( _get_parallel_mode())) else: self.use_parallel = False else: self.use_parallel = False if self.use_parallel: if self.cls_name not in ["Lamb", "AdamWeightDecay"]: raise RuntimeError( "Parallel optimizer does not support optimizer {}".format( self.cls_name)) self.dev_num = _get_device_num() if self.dev_num > self.param_length: raise RuntimeError( "Parallel optimizer can not be applied when the number of parameters {} is" " less than the number of devices {}".format( self.param_length, self.dev_num)) self.param_rank = self._get_parameter_group_id() self.optim_filter = tuple( map(lambda x: x == _get_global_rank(), self.param_rank)) self.param_names = [] for param in self.parameters: self.param_names.append(param.name) else: self.optim_filter = (True, ) * self.param_length
def __init__(self, network, optimizer, sens=1.0): super(TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.freeze = isinstance(optimizer, acc.FreezeOpt) self.optimizer = optimizer if not self.freeze: self.weights = self.optimizer.parameters self.train_strategy = getattr(self.optimizer, 'train_strategy', None) self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = F.identity self.parallel_mode = _get_parallel_mode() self.reducer_flag = self.parallel_mode in ( ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL) self.use_grad_accumulation = self.parallel_mode in ( ParallelMode.DATA_PARALLEL, ParallelMode.STAND_ALONE) if self.use_grad_accumulation: self.max_accumulation_step = get_auto_parallel_context( "grad_accumulation_step") if self.max_accumulation_step <= 1: self.max_accumulation_step = 1 self.use_grad_accumulation = False self.grad_accumulation = None if self.use_grad_accumulation: self.grad_accumulation = GradientAccumulation( self.max_accumulation_step, self.optimizer) if self.reducer_flag: self.mean = _get_gradients_mean() self.degree = _get_device_num() if self.freeze: self.grad_reducers = (DistributedGradReducer( opt.parameters, self.mean, self.degree) for opt in self.optimizer.opts) self.freeze_nets = tuple( _TrainFreezeCell(self.network, self.sens, self.grad, reducer, self.use_grad_accumulation, self.max_accumulation_step, opt) for reducer, opt in zip(self.grad_reducers, self.optimizer)) else: self.grad_reducer = DistributedGradReducer( self.optimizer.parameters, self.mean, self.degree) else: if self.freeze: self.freeze_nets = tuple( _TrainFreezeCell(self.network, self.sens, self.grad, self. grad_reducer, self.use_grad_accumulation, self.max_accumulation_step, opt) for opt in self.optimizer.opts) self.step = Parameter(Tensor(0, dtype=mstype.int32))
def __init__(self, network, optimizer, scale_update_cell=None, micro_batches=None, norm_clip=1.0, mech=None): super(_TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.hyper_map = C.HyperMap() if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.gpu_target = False self.alloc_status = NPUAllocFloatStatus() self.get_status = NPUGetFloatStatus() self.clear_status = NPUClearFloatStatus() self.reduce_sum = ReduceSum(keep_dims=False) self.base = Tensor(1, mstype.float32) self.less_equal = LessEqual() self.depend_parameter_use = ControlDepend(depend_mode=1) self.allreduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() self.grad_reducer = F.identity self.reducer_flag = self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL] if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = self.parallel_mode != ParallelMode.STAND_ALONE self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") self.add_flags(has_effect=True) # dp params self._micro_batches = micro_batches norm_clip = check_param_type('norm_clip', norm_clip, float) self._l2_norm = check_value_positive('norm_clip', norm_clip) self._split = P.Split(0, self._micro_batches) self._clip_by_global_norm = _ClipGradients() self._mech = mech self._tuple_add = _TupleAdd() self._hyper_map = C.HyperMap() self._micro_float = Tensor(micro_batches, mstype.float32)
def __init__(self, dataset, iter_first_order): super(_DatasetIterMSLoopSink, self).__init__(dataset) loop_size = dataset.__loop_size__ + iter_first_order self.loop_count = int(dataset.get_dataset_size() / loop_size * 2) # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number # times the batch dimension of tensors for run. Now only support LoopSink. if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): device_num = _get_device_num() self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num) def op(): return tuple() self.op = op
def __init__(self, network, config): super(NetWithLossClass, self).__init__(auto_prefix=False) host_device_mix = bool(config.host_device_mix) parallel_mode = _get_parallel_mode() is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) self.no_l2loss = host_device_mix and is_auto_parallel self.network = network self.l2_coef = config.l2_coef self.loss = P.SigmoidCrossEntropyWithLogits() self.square = P.Square() self.reduceMean_false = P.ReduceMean(keep_dims=False) if is_auto_parallel: self.reduceMean_false.add_prim_attr("cross_batch", True) self.reduceSum_false = P.ReduceSum(keep_dims=False)
def __init__(self, network, optimizer, sens=1.0): super(MyTrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = None parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: self.grad_reducer = DistributedGradReducer(optimizer.parameters, True, 8)
def __init__(self, network, optimizer, sens=1.0): super(TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = None parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree)
def __init__(self, dataset): super(_DatasetIterGE, self).__init__(dataset) self.loop_count = self.get_loop_count(dataset) parallel_mode = _get_parallel_mode() self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) batch_expand_num = 1 if self.need_to_full: batch_expand_num = _get_device_num() tensor_list_run = _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num) def op(): return tensor_list_run self.op = op
def __init__(self, network, optimizer, scale_sense=None): super(TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.hyper_map = C.HyperMap() if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.gpu_target = False self.alloc_status = NPUAllocFloatStatus() self.get_status = NPUGetFloatStatus() self.clear_status = NPUClearFloatStatus() self.reduce_sum = ReduceSum(keep_dims=False) self.base = Tensor(1, mstype.float32) self.less_equal = LessEqual() self.depend_parameter_use = ControlDepend(depend_mode=1) self.allreduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() self.grad_reducer = F.identity self.reducer_flag = self.parallel_mode in [ ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL ] if self.reducer_flag: mean = _get_gradients_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = self.parallel_mode != ParallelMode.STAND_ALONE self.scale_sense = None self.loss_scaling_manager = None if isinstance(scale_sense, Cell): self.loss_scaling_manager = scale_sense self.scale_sense = Parameter(Tensor(scale_sense.get_loss_scale(), dtype=mstype.float32), name="scale_sense") if isinstance(scale_sense, Tensor): self.scale_sense = Parameter(scale_sense, name='scale_sense')
def __init__(self, network, lr, eps, loss_scale=1000.0): super(TrainStepWrap, self).__init__(auto_prefix=False) self.network = network self.network.set_train() self.weights = ParameterTuple(network.trainable_params()) self.optimizer = Adam(self.weights, learning_rate=lr, eps=eps, loss_scale=loss_scale) self.hyper_map = C.HyperMap() self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = loss_scale self.reducer_flag = False self.grad_reducer = None parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_gradients_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(self.optimizer.parameters, mean, degree)
def __init__(self, dataset): self.loop_size = 1 if not hasattr(dataset, '__ME_INITED__'): if not hasattr(dataset, '__loop_size__'): self.loop_size = dataset.get_dataset_size() else: self.loop_size = dataset.__loop_size__ dataset.__ME_INITED__ = _exec_datagraph(dataset, self.loop_size).queue_name self.ind = 0 self.dataset = dataset dataset_types, dataset_shapes = _get_types_and_shapes(dataset) self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number # times the batch dimension of tensors for run if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): device_num = _get_device_num() self.dataset_shapes = _to_full_shapes(dataset_shapes, device_num)
def __init__(self, loss_netD, loss_netG, optimizerD, optimizerG, sens=1, auto_prefix=True): super(TrainOneStepCell, self).__init__(auto_prefix=auto_prefix) self.loss_netD = loss_netD # loss network self.loss_netD.set_grad() self.loss_netD.add_flags(defer_inline=True) self.loss_netG = loss_netG self.loss_netG.set_grad() self.loss_netG.add_flags(defer_inline=True) self.weights_G = optimizerG.parameters self.optimizerG = optimizerG self.weights_D = optimizerD.parameters self.optimizerD = optimizerD self.grad = ops.GradOperation(get_by_list=True, sens_param=True) self.sens = sens # Parallel processing self.reducer_flag = False self.grad_reducer_G = F.identity self.grad_reducer_D = F.identity self.parallel_mode = _get_parallel_mode() if self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_gradients_mean() degree = _get_device_num() self.grad_reducer_G = DistributedGradReducer( self.weights_G, mean, degree) self.grad_reducer_D = DistributedGradReducer( self.weights_D, mean, degree)
def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0): super(Optimizer, self).__init__(auto_prefix=False) if parameters is not None and not isinstance(parameters, list): parameters = list(parameters) if not parameters: raise ValueError("Optimizer got an empty parameter list.") if not isinstance(parameters[0], (dict, Parameter)): raise TypeError( "Only a list of Parameter or dict can be supported.") if isinstance(loss_scale, int): loss_scale = float(loss_scale) validator.check_value_type("loss_scale", loss_scale, [float], self.cls_name) validator.check_positive_float(loss_scale, "loss_scale", self.cls_name) self.loss_scale = loss_scale weight_decay = self._preprocess_weight_decay(weight_decay) self._unique = True self._target = context.get_context("device_target") self.dynamic_lr = False self.assignadd = None self.global_step = None self.is_group = False self.is_group_lr = False self.is_group_params_ordered = False learning_rate = self._preprocess_single_lr(learning_rate) if isinstance(parameters[0], dict): self.is_group = True self.group_params = [] self.group_lr = [] self.group_weight_decay = [] self._init_group_params(parameters, learning_rate, weight_decay) # The final value of dynamic_lr can be determined after the process of parse_single_lr and init_group_params if self.dynamic_lr: self.assignadd = P.AssignAdd() self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step') if self.is_group_lr: if self.dynamic_lr: self.learning_rate = CellList(self.group_lr) else: self.learning_rate = ParameterTuple(self.group_lr) else: self.learning_rate = self._build_single_lr(learning_rate, 'learning_rate') if self.is_group: self.parameters = ParameterTuple(self.group_params) self.weight_decay = tuple(self.group_weight_decay) self.weight_decay_tensor_tuple = tuple( Tensor(x, mstype.float32) for x in self.group_weight_decay) decay_filter = lambda x: x > 0 self.decay_flags = tuple( decay_filter(x) for x in self.weight_decay) self.exec_weight_decay = any(self.decay_flags) else: self.parameters = ParameterTuple(parameters) self.weight_decay = weight_decay * loss_scale self.weight_decay_tensor = Tensor(self.weight_decay, mstype.float32) decay_filter = lambda x: 'beta' not in x.name and 'gamma' not in x.name self.decay_flags = tuple(decay_filter(x) for x in self.parameters) self.exec_weight_decay = self.weight_decay > 0 # when a parameter has been unique, there is no need do another unique in optimizer. for param in self.parameters: if param.unique: self._unique = False break ps_filter = lambda x: x.is_param_ps self.ps_parameters = tuple(ps_filter(x) for x in self.parameters) ps_cache_filter = lambda x: x.cache_enable self.cache_enable = tuple(ps_cache_filter(x) for x in self.parameters) self.reciprocal_scale = Tensor(1.0 / loss_scale, mstype.float32) self.need_scale = loss_scale != 1.0 self.global_step_increase_tensor = Tensor(1, mstype.int32) self.param_length = len(self.parameters) self.map_ = C.Map() if context.get_auto_parallel_context("enable_parallel_optimizer"): if _get_parallel_mode( ) == ParallelMode.DATA_PARALLEL and context.get_context( "device_target") == "Ascend": self.use_parallel = True elif _get_parallel_mode() == ParallelMode.DATA_PARALLEL \ and context.get_context("device_target") != "Ascend": raise RuntimeError( "Parallel optimizer only supports Ascend in data parallel mode." ) elif _get_parallel_mode() in (ParallelMode.STAND_ALONE, ParallelMode.HYBRID_PARALLEL): raise RuntimeError( "Parallel optimizer is not supported in {}.".format( _get_parallel_mode())) else: self.use_parallel = False else: self.use_parallel = False if self.use_parallel: if self.cls_name not in ["Lamb", "AdamWeightDecay"]: raise RuntimeError( "Parallel optimizer does not support optimizer {}".format( self.cls_name)) self.dev_num = _get_device_num() if self.dev_num > self.param_length: raise RuntimeError( "Parallel optimizer can not be applied when the number of parameters {} is" " less than the number of devices {}".format( self.param_length, self.dev_num)) self.param_rank = self._get_parameter_group_id() self.optim_filter = tuple( map(lambda x: x == _get_global_rank(), self.param_rank)) self.param_names = [] for param in self.parameters: self.param_names.append(param.name) else: self.optim_filter = (True, ) * self.param_length
def compile(self, obj, *args, phase='predict', params=None, do_convert=True): """ Compiles graph. Args: obj (Function/Cell): The function or cell instance need compile. args (tuple): Function or cell input arguments. phase (str): The name of compile phase. Default: 'predict'. params (OrderedDict): The parameters dictionary used for init data graph. Default: None. do_convert (bool): When set to True, convert ME graph to GE graph after compiling graph. Return: Str, the full phase of the cell. Bool, if the graph has been compiled before, return False, else return True. """ obj.check_names() args_names, args_list = _generate_pip_args(obj, *args) dic = dict(zip(args_names, args_list)) key = generate_key(phase, dic) self.phase_prefix = str(key[1]) if phase == 'export': phase = phase + '.' + str(obj.create_time) else: phase = self.phase_prefix + phase + '.' + str(obj.create_time) enable_debug_runtime = context.get_context("enable_debug_runtime") enable_ge = context.get_context("enable_ge") use_vm = not enable_ge or (enable_debug_runtime and context.get_context("mode") == context.PYNATIVE_MODE) if phase in self.compile_cache.keys(): logger.debug("%r graph has existed.", phase) return phase, False result = self._executor.compile(obj, args_list, phase, use_vm) self.compile_cache[phase] = phase if not result: raise RuntimeError("Executor compile failed.") graph = self._executor.get_func_graph(phase) if graph is None: logger.error("%r graph compile failed.", phase) if not do_convert: return phase, True if not enable_debug_runtime or enable_ge: if _get_parallel_mode() in ["auto_parallel", "semi_auto_parallel"]: obj.parameter_layout_dict = self._executor.get_parameter_layout( phase) obj.load_parameter_slice(params) # the following GE init process is not needed when use vm or ms backend if enable_ge: # decide whether to sink based on whether the inputs is virtual or not if args_list and isinstance(args_list[0], Tensor) and args_list[0].virtual_flag: _set_dataset_mode_config('sink') else: _set_dataset_mode_config('normal') self._build_data_graph(obj, params, phase) if "export" not in phase: init_phase = "init_subgraph" + "." + str(obj.create_time) _exec_init_graph(obj, init_phase) elif not enable_ge and "export" in phase: self._build_data_graph(obj, params, phase) return phase, True
def __init__(self, network, optimizer, norm_bound=1.0, sens=1.0, micro_batches=None, noise_mech=None, clip_mech=None): super(_TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.sens = sens self.reducer_flag = False self.grad_reducer = None parallel_mode = _get_parallel_mode() if parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL): self.reducer_flag = True if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) # dp params if micro_batches is None: msg = 'micro_batches must give in differential privacy, but got value: {}'.format( micro_batches) LOGGER.error(TAG, msg) raise ValueError(msg) self._micro_batches = micro_batches self._norm_bound = norm_bound self._split = P.Split(0, self._micro_batches) self._clip_by_global_norm = _ClipGradients() self._noise_mech = noise_mech self._clip_mech = clip_mech self._tuple_add = _TupleAdd() self._add = P.TensorAdd() self._norm = nn.Norm() self._hyper_map = C.HyperMap() self._zero = Tensor(0, mstype.float32) self._assign = P.Assign() self._div = P.Div() self._sqrt = P.Sqrt() self._reduce_sum = P.ReduceSum() self._square_all = P.Square() self._less = P.Less() self._cast = P.Cast() self._micro_float = Tensor(micro_batches, mstype.float32) self._noise_mech_param_updater = None if self._noise_mech is not None and self._noise_mech._decay_policy is not None: self._noise_mech_param_updater = _MechanismsParamsUpdater( decay_policy=self._noise_mech._decay_policy, decay_rate=self._noise_mech._noise_decay_rate, cur_noise_multiplier=self._noise_mech._noise_multiplier, init_noise_multiplier=self._noise_mech. _initial_noise_multiplier)
def __init__(self, network, optimizer, scale_update_cell=None, micro_batches=None, norm_bound=1.0, noise_mech=None, clip_mech=None): super(_TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.hyper_map = C.HyperMap() if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.gpu_target = False self.alloc_status = NPUAllocFloatStatus() self.get_status = NPUGetFloatStatus() self.clear_status = NPUClearFloatStatus() self.reduce_sum = ReduceSum(keep_dims=False) self.base = Tensor(1, mstype.float32) self.less_equal = LessEqual() self.depend_parameter_use = ControlDepend(depend_mode=1) self.allreduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() self.grad_reducer = F.identity self.reducer_flag = self.parallel_mode in [ ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL ] if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = self.parallel_mode != ParallelMode.STAND_ALONE self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor( scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") self.add_flags(has_effect=True) # dp params self._micro_batches = micro_batches self._norm_bound = norm_bound self._split = P.Split(0, self._micro_batches) self._clip_by_global_norm = _ClipGradients() self._noise_mech = noise_mech self._clip_mech = clip_mech self._add = P.TensorAdd() self._norm = nn.Norm() self._tuple_add = _TupleAdd() self._hyper_map = C.HyperMap() self._micro_float = Tensor(micro_batches, mstype.float32) self._zero = Tensor(0, mstype.float32) self._assign = P.Assign() self._div = P.Div() self._sqrt = P.Sqrt() self._reduce_sum = P.ReduceSum() self._square_all = P.Square() self._less = P.Less() self._cast = P.Cast() self._noise_mech_param_updater = None if self._noise_mech is not None and self._noise_mech._decay_policy is not None: self._noise_mech_param_updater = _MechanismsParamsUpdater( decay_policy=self._noise_mech._decay_policy, decay_rate=self._noise_mech._noise_decay_rate, cur_noise_multiplier=self._noise_mech._noise_multiplier, init_noise_multiplier=self._noise_mech. _initial_noise_multiplier)
def _amp_build_train_network(self, network, optimizer, loss_fn=None, level='O0', **kwargs): """ Build the mixed precision training cell automatically. Args: network (Cell): Definition of the network. loss_fn (Union[None, Cell]): Definition of the loss_fn. If None, the `network` should have the loss inside. Default: None. optimizer (Optimizer): Optimizer to update the Parameter. level (str): Supports [O0, O2]. Default: "O0". - O0: Do not change. - O2: Cast network to float16, keep batchnorm and `loss_fn` (if set) run in float32, using dynamic loss scale. cast_model_type (:class:`mindspore.dtype`): Supports `mstype.float16` or `mstype.float32`. If set to `mstype.float16`, use `float16` mode to train. If set, overwrite the level setting. keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32`. If set, overwrite the level setting. loss_scale_manager (Union[None, LossScaleManager]): If None, not scale the loss, or else scale the loss by LossScaleManager. If set, overwrite the level setting. """ validator.check_value_type('network', network, nn.Cell, None) validator.check_value_type('optimizer', optimizer, nn.Optimizer, None) validator.check('level', level, "", ['O0', 'O2'], Rel.IN, None) self._check_kwargs(kwargs) config = dict(_config_level[level], **kwargs) config = edict(config) if config.cast_model_type == mstype.float16: network.to_float(mstype.float16) if config.keep_batchnorm_fp32: _do_keep_batchnorm_fp32(network) if loss_fn: network = _add_loss_network(network, loss_fn, config.cast_model_type) if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): network = _VirtualDatasetCell(network) loss_scale = 1.0 if config.loss_scale_manager is not None: loss_scale_manager = config.loss_scale_manager loss_scale = loss_scale_manager.get_loss_scale() update_cell = loss_scale_manager.get_update_cell() if update_cell is not None: # only cpu not support `TrainOneStepWithLossScaleCell` for control flow. if not context.get_context( "enable_ge") and context.get_context( "device_target") == "CPU": msg = "Only `loss_scale_manager=None` and " \ "`loss_scale_manager=FixedLossScaleManager(drop_overflow" \ "_update=False)` are supported in current version. " \ "If you use `O2` option, please use " \ "`loss_scale_manager=None` or `FixedLossScaleManager`" LOGGER.error(TAG, msg) raise ValueError(msg) network = _TrainOneStepWithLossScaleCell( network, optimizer, scale_update_cell=update_cell, micro_batches=self._micro_batches, norm_bound=self._norm_bound, clip_mech=self._clip_mech, noise_mech=self._noise_mech).set_train() return network network = _TrainOneStepCell(network, optimizer, self._norm_bound, loss_scale, micro_batches=self._micro_batches, clip_mech=self._clip_mech, noise_mech=self._noise_mech).set_train() return network