예제 #1
0
    def _gpu_analyse(self):
        """Collect and analyse gpu performance data"""
        self._dev_id = context.get_context("device_id")
        if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group":
            self._dev_id = str(get_rank())
        self._gpu_profiler.stop()
        timeline_generator = self._generate_timeline()

        # parse minddata pipeline operator and queue for GPU
        try:
            pipeline_parser = MinddataPipelineParser(self._output_path,
                                                     self._dev_id,
                                                     self._output_path)
            pipeline_parser.parse()
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse step trace info
        try:
            self._analyse_step_trace(is_training_mode_flag=timeline_generator.
                                     check_op_name('Gradients'))
        except ProfilerException as err:
            logger.warning(err.message)

        os.environ['PROFILING_MODE'] = str("false")

        logger.warning(
            '\nMemory Usage is not supported on GPU currently.\n'
            'Please running on Ascend if you would like to see memory analysis, '
            'otherwise, this warning can be ignored.')
예제 #2
0
    def _gpu_analyse(self):
        """Collect and analyse gpu performance data"""
        if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group" and self._dev_id != str(get_rank()):
            self._dev_id = str(get_rank())
            logger.error('Please check the Profiler object initialized after mindspore.context.set_auto_parallel_'
                         'context() and mindspore.communication.management.init(). Profiler should be initialized'
                         ' after these code.')
        self._gpu_profiler.stop()
        timeline_generator = self._generate_timeline()

        # parse minddata pipeline operator and queue for GPU
        try:
            pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path)
            pipeline_parser.parse()
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse step trace info
        try:
            self._analyse_step_trace(is_training_mode_flag=timeline_generator.check_op_name('Gradients'))
        except ProfilerException as err:
            logger.warning(err.message)

        os.environ['PROFILING_MODE'] = str("false")

        logger.warning(
            '\nMemory Usage is not supported on GPU currently.\n'
            'Please running on Ascend if you would like to see memory analysis, '
            'otherwise, this warning can be ignored.'
        )
예제 #3
0
    def _gpu_analyse(self):
        """Collect and analyse gpu performance data"""
        if context.get_auto_parallel_context(
                'device_num') > 1 and self._dev_id != get_rank():
            self._dev_id = get_rank()
            logger.error(
                'Please check the Profiler object initialized after set_auto_parallel_context() '
                'and init(). Profiler should be initialized after these code. '
            )
        self._gpu_profiler.stop()
        timeline_generator = self._generate_timeline()

        # parse minddata pipeline operator and queue for GPU
        try:
            pipeline_parser = MinddataPipelineParser(self._output_path,
                                                     self._dev_id,
                                                     self._output_path)
            pipeline_parser.parse()
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse step trace info
        try:
            self._analyse_step_trace(is_training_mode_flag=timeline_generator.
                                     check_op_name('Gradients'))
        except ProfilerException as err:
            logger.warning(err.message)

        os.environ['PROFILING_MODE'] = str("false")
예제 #4
0
    def _ascend_analyse(self):
        """Collect and analyse ascend performance data"""
        release()

        job_id = self._get_profiling_job_id()
        logger.info("Profiling: job id is %s ", job_id)

        source_path = os.path.join(self._output_path, job_id)
        # parse hwts.log.data.45.dev file, and get task profiling data
        hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt"
        hwts_output_filename = os.path.join(self._output_path,
                                            hwts_output_filename)
        source_path = validate_and_normalize_path(source_path)
        hwts_output_filename = validate_and_normalize_path(
            hwts_output_filename)
        hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename)
        hwtslog_parser.execute()

        # parse Framework file, and get the relation of op and tasks
        framework_parser = FrameworkParser(job_id, self._dev_id,
                                           self._output_path)
        framework_parser.parse()
        op_task_dict = framework_parser.to_task_id_full_op_name_dict()
        if not op_task_dict:
            logger.error("Profiling: fail to parse framework files.")
            return

        # get op compute time from hwts data and framework data, write output_op_compute_time.txt
        opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt"
        opcompute_output_filename = os.path.join(self._output_path,
                                                 opcompute_output_filename)
        opcompute_output_filename = validate_and_normalize_path(
            opcompute_output_filename)
        optime_parser = OPComputeTimeParser(hwts_output_filename,
                                            opcompute_output_filename,
                                            op_task_dict, self._output_path,
                                            self._dev_id)
        optime_parser.execute()

        # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt
        output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt"
        output_data_preprocess_aicpu = os.path.join(
            self._output_path, output_data_preprocess_aicpu)
        output_data_preprocess_aicpu = validate_and_normalize_path(
            output_data_preprocess_aicpu)
        aicpu_data_parser = DataPreProcessParser(source_path,
                                                 output_data_preprocess_aicpu)
        aicpu_data_parser.execute()

        # Parsing minddata AICPU profiling
        MinddataParser.execute(source_path, self._output_path, self._dev_id)

        # parse minddata pipeline operator and queue
        try:
            pipeline_parser = MinddataPipelineParser(self._output_path,
                                                     self._dev_id,
                                                     self._output_path)
            pipeline_parser.parse()
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse op compute time info
        try:
            self._analyser_op_info()
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse step trace info
        points = None
        try:
            points = self._analyse_step_trace(source_path, framework_parser)
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse timeline info
        try:
            self._analyse_timeline(aicpu_data_parser, optime_parser,
                                   source_path)
        except (ProfilerIOException, ProfilerFileNotFoundException,
                RuntimeError) as err:
            logger.warning('Fail to write timeline data: %s', err)

        # analyse memory usage info
        try:
            self._analyse_memory_usage(points)
        except (ProfilerIOException, ProfilerFileNotFoundException,
                ProfilerRawFileException) as err:
            logger.warning(err.message)

        os.environ['PROFILING_MODE'] = str("false")
        context.set_context(enable_profiling=False)
예제 #5
0
    def analyse(self):
        """
        Collect and analyse performance data, called after training or during training.

        Examples:
            >>> from mindspore.profiler import Profiler
            >>> import mindspore.context
            >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
            >>>                     device_id=int(os.environ["DEVICE_ID"]))
            >>> profiler = Profiler()
            >>> model = Model()
            >>> model.train()
            >>> profiler.analyse()
        """
        if self._device_target and self._device_target == "GPU":
            if context.get_auto_parallel_context(
                    'device_num') > 1 and self._dev_id != get_rank():
                self._dev_id = get_rank()
                logger.error(
                    'Please check the Profiler object initialized after set_auto_parallel_context() '
                    'and init(). Profiler should be initialized after these code. '
                )
            self._gpu_profiler.stop()
            timeline_generator = self._generate_timeline()

            # parse minddata pipeline operator and queue for GPU
            try:
                pipeline_parser = MinddataPipelineParser(
                    self._output_path, self._dev_id, self._output_path)
                pipeline_parser.parse()
            except ProfilerException as err:
                logger.warning(err.message)

            # analyse step trace info
            try:
                self._analyse_step_trace(
                    is_training_mode_flag=timeline_generator.check_op_name(
                        'Gradients'))
            except ProfilerException as err:
                logger.warning(err.message)

            os.environ['PROFILING_MODE'] = str("false")

        elif self._device_target and self._device_target == "Ascend":
            release()

            job_id = self._get_profiling_job_id()
            logger.info("Profiling: job id is %s ", job_id)

            source_path = os.path.join(self._output_path, job_id)
            # parse hwts.log.data.45.dev file, and get task profiling data
            hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt"
            hwts_output_filename = os.path.join(self._output_path,
                                                hwts_output_filename)
            source_path = validate_and_normalize_path(source_path)
            hwts_output_filename = validate_and_normalize_path(
                hwts_output_filename)
            hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename)
            _ = hwtslog_parser.execute()

            # parse Framework file, and get the relation of op and tasks
            framework_parser = FrameworkParser(job_id, self._dev_id,
                                               self._output_path)
            framework_parser.parse()
            op_task_dict = framework_parser.to_task_id_full_op_name_dict()
            if not op_task_dict:
                logger.error("Profiling: fail to parse framework files.")
                return

            # get op compute time from hwts data and framework data, write output_op_compute_time.txt
            opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt"
            opcompute_output_filename = os.path.join(
                self._output_path, opcompute_output_filename)
            opcompute_output_filename = validate_and_normalize_path(
                opcompute_output_filename)
            optime_parser = OPComputeTimeParser(hwts_output_filename,
                                                opcompute_output_filename,
                                                op_task_dict,
                                                self._output_path,
                                                self._dev_id)
            optime_parser.execute()

            # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt
            output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt"
            output_data_preprocess_aicpu = os.path.join(
                self._output_path, output_data_preprocess_aicpu)
            output_data_preprocess_aicpu = validate_and_normalize_path(
                output_data_preprocess_aicpu)
            aicpu_data_parser = DataPreProcessParser(
                source_path, output_data_preprocess_aicpu)
            aicpu_data_parser.execute()

            # Parsing minddata AICPU profiling
            MinddataParser.execute(source_path, self._output_path,
                                   self._dev_id)

            # parse minddata pipeline operator and queue
            try:
                pipeline_parser = MinddataPipelineParser(
                    self._output_path, self._dev_id, self._output_path)
                pipeline_parser.parse()
            except ProfilerException as err:
                logger.warning(err.message)

            # analyse op compute time info
            try:
                self._analyser_op_info()
            except ProfilerException as err:
                logger.warning(err.message)

            # analyse step trace info
            try:
                self._analyse_step_trace(source_path, framework_parser)
            except ProfilerException as err:
                logger.warning(err.message)

            # analyse timeline info
            try:
                self._analyse_timeline(aicpu_data_parser, optime_parser)
            except (ProfilerIOException, ProfilerFileNotFoundException,
                    RuntimeError) as err:
                logger.warning('Fail to write timeline data: %s', err)

            os.environ['PROFILING_MODE'] = str("false")
            context.set_context(enable_profiling=False)
예제 #6
0
    def analyse(self):
        """
        Collect and analyse performance data, called after training or during training.

        Examples:
            >>> from mindspore.profiler import Profiler
            >>> import mindspore.context
            >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
            >>>                     device_id=int(os.environ["DEVICE_ID"]))
            >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
            >>> model = Model()
            >>> model.train()
            >>> profiler.analyse()
        """
        release()

        job_id = self._get_profiling_job_id()
        logger.info("Profiling: job id is %s ", job_id)

        source_path = os.path.join(PROFILING_LOG_BASE_PATH, job_id)
        # parse hwts.log.data.45.dev file, and get task profiling data
        hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt"
        hwts_output_filename = os.path.join(self._output_path,
                                            hwts_output_filename)
        hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename)
        result = hwtslog_parser.execute()
        if not result:
            logger.error("Profiling: fail to parse hwts log file.")
            return

        # parse Framework file, and get the relation of op and tasks
        framework_parser = FrameworkParser(job_id, self._dev_id,
                                           self._output_path)
        framework_parser.parse()
        op_task_dict = framework_parser.to_task_id_full_op_name_dict()
        if not op_task_dict:
            logger.error("Profiling: fail to parse framework files.")
            return

        # get op compute time from hwts data and framework data, write output_op_compute_time.txt
        opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt"
        opcompute_output_filename = os.path.join(self._output_path,
                                                 opcompute_output_filename)
        optime_parser = OPComputeTimeParser(hwts_output_filename,
                                            opcompute_output_filename,
                                            op_task_dict, self._output_path,
                                            self._dev_id)
        optime_parser.execute()

        # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt
        output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt"
        output_data_preprocess_aicpu = os.path.join(
            self._output_path, output_data_preprocess_aicpu)
        aicpu_data_parser = DataPreProcessParser(source_path,
                                                 output_data_preprocess_aicpu)
        aicpu_data_parser.execute()

        # Parsing minddata AICPU profiling
        MinddataParser.execute(source_path, self._output_path, self._dev_id)

        # parse minddata pipeline operator and queue
        try:
            pipeline_parser = MinddataPipelineParser(self._output_path,
                                                     self._dev_id,
                                                     self._output_path)
            pipeline_parser.parse()
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse op compute time info
        try:
            self._analyser_op_info()
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse step trace info
        try:
            self._analyse_step_trace(source_path, framework_parser)
        except ProfilerException as err:
            logger.warning(err.message)

        # analyse timeline info
        try:
            self._analyse_timeline(aicpu_data_parser, optime_parser)
        except (ProfilerIOException, ProfilerFileNotFoundException,
                RuntimeError) as err:
            logger.warning('Fail to write timeline data: %s', err)