예제 #1
0
def evaluate_sys(run_id, task_type, mth, dataset, ens_method, enable_meta,
                 eval_type='holdout', time_limit=1200, seed=1, tree_id=0):
    _task_type = MULTICLASS_CLS if task_type == 'cls' else REGRESSION
    train_data, test_data = load_train_test_data(dataset, task_type=_task_type)
    _enable_meta = True if enable_meta == 'true' else False
    if task_type == 'cls':
        from mindware.estimators import Classifier
        estimator = Classifier(time_limit=time_limit,
                               per_run_time_limit=30,
                               output_dir=save_folder,
                               ensemble_method=ens_method,
                               enable_meta_algorithm_selection=_enable_meta,
                               evaluation=eval_type,
                               metric='bal_acc',
                               include_algorithms=['extra_trees', 'random_forest',
                                                   'adaboost', 'gradient_boosting',
                                                   'k_nearest_neighbors', 'liblinear_svc',
                                                   'libsvm_svc', 'lightgbm',
                                                   'logistic_regression', 'random_forest'],
                               n_jobs=1)
    else:
        from mindware.estimators import Regressor
        estimator = Regressor(time_limit=time_limit,
                              per_run_time_limit=90,
                              output_dir=save_folder,
                              ensemble_method=ens_method,
                              enable_meta_algorithm_selection=_enable_meta,
                              evaluation=eval_type,
                              metric='mse',
                              # include_preprocessors=['percentile_selector_regression'],
                              # include_algorithms=['random_forest'],
                              n_jobs=1)

    start_time = time.time()
    estimator.fit(train_data, opt_strategy=mth, dataset_id=dataset, tree_id=tree_id)
    pred = estimator.predict(test_data)
    if task_type == 'cls':
        test_score = balanced_accuracy_score(test_data.data[1], pred)
    else:
        test_score = mean_squared_error(test_data.data[1], pred)
    validation_score = estimator._ml_engine.solver.incumbent_perf
    # eval_dict = estimator._ml_engine.solver.get_eval_dict()
    print('Run ID         : %d' % run_id)
    print('Dataset        : %s' % dataset)
    print('Val/Test score : %f - %f' % (validation_score, test_score))

    save_path = save_folder + '%s_%s_%s_%s_%d_%d_%d_%d.pkl' % (
        task_type, mth, dataset, enable_meta, time_limit, (ens_method is None), tree_id, run_id)
    with open(save_path, 'wb') as f:
        pickle.dump([dataset, validation_score, test_score, start_time], f)

    # Delete output dir
    shutil.rmtree(os.path.join(estimator.get_output_dir()))
예제 #2
0
def evaluate_hmab(algorithms,
                  run_id,
                  time_limit=600,
                  dataset='credit',
                  eval_type='holdout',
                  enable_ens=True,
                  seed=1):
    print('%s\nDataset: %s, Run_id: %d, Budget: %d.\n%s' %
          ('=' * 50, dataset, run_id, time_limit, '=' * 50))
    task_id = '[%s][%s-%d-%d]' % (hmab_id, dataset, len(algorithms),
                                  time_limit)
    _start_time = time.time()
    train_data, test_data = load_train_test_data(dataset,
                                                 task_type=MULTICLASS_CLS)
    if enable_ens is True:
        ensemble_method = 'ensemble_selection'
    else:
        ensemble_method = None

    clf = Classifier(time_limit=time_limit,
                     per_run_time_limit=per_run_time_limit,
                     include_algorithms=algorithms,
                     amount_of_resource=None,
                     output_dir=save_dir,
                     ensemble_method=ensemble_method,
                     evaluation=eval_type,
                     metric='bal_acc',
                     n_jobs=1)
    # clf.fit(train_data, meta_datasets=holdout_datasets)
    # clf.fit(train_data, opt_strategy='combined')
    clf.fit(train_data)
    clf.refit()
    pred = clf.predict(test_data)
    test_score = balanced_accuracy_score(test_data.data[1], pred)
    timestamps, perfs = clf.get_val_stats()
    validation_score = np.max(perfs)
    print('Dataset          : %s' % dataset)
    print('Validation/Test score : %f - %f' % (validation_score, test_score))

    save_path = save_dir + '%s-%d.pkl' % (task_id, run_id)
    with open(save_path, 'wb') as f:
        stats = [timestamps, perfs]
        pickle.dump([validation_score, test_score, stats], f)
예제 #3
0
def test_cls():
    save_dir = './data/eval_exps/soln-ml'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    time_limit = 60
    print('==> Start to evaluate with Budget %d' % time_limit)
    ensemble_method = 'ensemble_selection'
    eval_type = 'holdout'

    iris = load_iris()
    X, y = iris.data, iris.target
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.33,
                                                        random_state=1,
                                                        stratify=y)
    dm = DataManager(X_train, y_train)
    train_data = dm.get_data_node(X_train, y_train)
    test_data = dm.get_data_node(X_test, y_test)

    clf = Classifier(time_limit=time_limit,
                     output_dir=save_dir,
                     ensemble_method=ensemble_method,
                     enable_meta_algorithm_selection=False,
                     ensemble_size=10,
                     evaluation=eval_type,
                     metric='acc',
                     n_jobs=2)
    clf.fit(train_data, tree_id=2)
    print(clf.summary())

    pred = clf.predict(test_data)
    print(accuracy_score(test_data.data[1], pred))

    shutil.rmtree(save_dir)
예제 #4
0
n_jobs = args.n_jobs
ensemble_method = args.ens_method
if ensemble_method == 'none':
    ensemble_method = None

save_dir = './data/eval_exps/soln-ml'
if not os.path.exists(save_dir):
    os.makedirs(save_dir)

print('==> Start to evaluate with Budget %d' % time_limit)

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y,
                                                    test_size=0.33,
                                                    random_state=1)
dm = DataManager(X_train, y_train)
train_data = dm.get_data_node(X_train, y_train)
test_data = dm.get_data_node(X_test, y_test)

clf = Classifier(time_limit=time_limit,
                 output_dir=save_dir,
                 ensemble_method=ensemble_method,
                 evaluation=eval_type,
                 metric='acc',
                 n_jobs=n_jobs)
clf.fit(train_data)
pred = clf.predict(test_data)
print(balanced_accuracy_score(test_data.data[1], pred))
예제 #5
0
import numpy as np
import os
import sys

sys.path.append(os.getcwd())

from mindware.components.feature_engineering.transformations.preprocessor.text2vector import \
    Text2VectorTransformation
from mindware.components.feature_engineering.transformation_graph import DataNode
from mindware.components.utils.constants import *
from mindware.estimators import Classifier

x = np.array([[1, 'I am good', 'I am right', 3],
              [2, 'He is good', 'He is ok', 4],
              [2.5, 'Everyone is good', 'Everyone is ok', 7],
              [1.3333, 'well', 'what', 5]])
y = np.array([0, 1, 0, 1])

t2v = Text2VectorTransformation()
data = (x, y)
feature_type = [NUMERICAL, TEXT, TEXT, DISCRETE]
datanode = DataNode(data, feature_type)

clf = Classifier(time_limit=20,
                 enable_meta_algorithm_selection=False,
                 include_algorithms=['random_forest'])

clf.fit(datanode, opt_strategy='combined')
print(clf.predict(datanode))