def dry_run(problem, sub_problem, eval_mode, dev_mode, cloud_mode): if problem == 'whales': setup_torch_multiprocessing() pm = importlib.import_module('minerva.{}.problem_manager'.format(problem)) logging.info('running: {0}'.format(sub_problem)) pm.dry_run(sub_problem, eval_mode, dev_mode, cloud_mode)
def dry_run(problem, train_mode, dev_mode): if problem == 'whales': setup_torch_multiprocessing() pm = importlib.import_module('minerva.{}.problem_manager'.format(problem)) sub_problems = SUBPROBLEM_INFERENCE.get(problem, {0: None}) for sub_problem in list(set(sub_problems.values())): if sub_problem: logging.info('running: {0}'.format(sub_problem)) pm.dry_run(sub_problem, train_mode, dev_mode)
def submit(problem, task_nr, file_path, dev_mode): if file_path is None: file_path = 'resources/{}/tasks/task{}.ipynb'.format(problem, task_nr) if problem == 'whales': setup_torch_multiprocessing() sub_problems = SUBPROBLEM_INFERENCE.get(problem, {}) task_sub_problem = sub_problems.get(task_nr, None) pm = importlib.import_module('minerva.{}.problem_manager'.format(problem)) pm.submit_task(task_sub_problem, task_nr, file_path, dev_mode)
def submit(problem, sub_problem, task_nr, filepath, dev_mode, cloud_mode): if problem == 'whales': setup_torch_multiprocessing() pm = importlib.import_module('minerva.{}.problem_manager'.format(problem)) pm.submit_task(sub_problem, task_nr, filepath, dev_mode, cloud_mode)