def run(pathImages, method, numpatch, imsample, percentage, codebook, dist, size, fselec, fselec_perc, histnorm, clust, nclusters, rep): ################################################################# # # Initializations and result file configurations # ################################################################# im_dataset_name = pathImages.split('/')[-1] date_time = datetime.datetime.now().strftime('%b-%d-%I%M%p-%G') name_results_file = 'BOC_' + im_dataset_name + '_' + str( numpatch ) + '_' + imsample + '_' + codebook + '_' + str( size ) + '_' + fselec + '_' + histnorm + '_' + clust + '_' + dist + '_' + date_time #dir_results = 'Results_' + im_dataset_name + '_BOC_' + date_time dir_results = 'Results_BOC' if not os.path.exists(dir_results): os.makedirs(dir_results) file_count = 2 file_name = os.path.join(dir_results, name_results_file) while os.path.exists(file_name + ".txt"): file_name = os.path.join(dir_results, name_results_file) + "_" + str(file_count) file_count = file_count + 1 f = open(file_name + ".txt", 'w') ################################################################# # # Get images # ################################################################# #pathImages = '/Users/Mariana/mieec/Tese/Development/ImageDatabases/Graz-01_sample' imList = get_imlist(pathImages) print 'Number of images read = ' + str(len(imList)) f.write("Number of images in dataset read: " + str(len(imList)) + "\n") ################################################################# # # Image description # ################################################################# kp_vector = [] #vector with the keypoints object des_vector = [ ] #vector wih the descriptors (in order to obtain the codebook) number_of_kp = [] #vector with the number of keypoints per image counter = 1 #save current time start_time = time.time() labels = [] class_names = [] #ADDED imPaths = [] #number of divisions of the image div = int(np.sqrt(numpatch)) n_images = 0 #detect the keypoints and compute the sift descriptors for each image for im in imList: if 'DS_Store' not in im: #ADDED imPaths.append(im) print 'image: ' + str(im) + ' number: ' + str(counter) #read image img = cv2.imread(im, 1) img_gray = cv2.imread(im, 0) img_lab = cv2.cvtColor(img, cv.CV_BGR2Lab) height, width, comp = img_lab.shape h_region = height / div w_region = width / div des = [] for i in range(0, div): for j in range(0, div): #mask mask = np.zeros(img_gray.shape, dtype=np.uint8) mask[i * h_region:(i + 1) * h_region, j * w_region:(j + 1) * w_region] = 1 hist = cv2.calcHist([img_lab], [0, 1, 2], mask, [256, 256, 256], [0, 256, 0, 256, 0, 256]) max_color_l, max_color_a, max_color_b = np.where( hist == np.max(hist)) des.append( [max_color_l[0], max_color_a[0], max_color_b[0]]) number_of_kp.append(div * div) if counter == 1: des_vector = des else: des_vector = np.concatenate((des_vector, des), axis=0) counter += 1 #for evaluation name1 = im.split("/")[-1] name = name1.split("_")[0] if name in class_names: index = class_names.index(name) labels.append(index) else: class_names.append(name) index = class_names.index(name) labels.append(index) n_images = n_images + 1 #measure the time to compute the description of each image (divide time elapsed by # of images) elapsed_time = (time.time() - start_time) / len(imList) print 'Time to compute detector and descriptor for each image = ' + str( elapsed_time) f.write( 'Average time to compute detector and descriptor for each image = ' + str(elapsed_time) + '\n') average_words = sum(number_of_kp) / float(len(number_of_kp)) print 'Total number of features = ' + str(len(des_vector)) f.write('Total number of features obtained = ' + str(len(des_vector)) + '\n') print 'Average number of keypoints per image = ' + str(average_words) f.write('Average number of keypoints per image = ' + str(average_words) + '\n') ################################################################# # # Image and Keypoint sampling # ################################################################# rand_indexes = [] nmi_indexes = [] for iteraction in range(0, rep): print "\nIteraction #" + str(iteraction + 1) + '\n' f.write("\nIteraction #" + str(iteraction + 1) + '\n') print 'Sampling images and keypoints prior to codebook computation...' if imsample != "NONE": sampleKp = sampleKeypoints.SamplingImandKey( n_images, number_of_kp, average_words, percentage) sampleallKp = sampleAllKeypoints.SamplingAllKey(percentage) names_sampling = np.array(["SAMPLEI", "SAMPLEP"]) sample_method = np.array([sampleKp, sampleallKp]) #Get the sampling method passed in the -g argument index = np.where(names_sampling == imsample)[0] if index.size > 0: sampling_to_use = sample_method[index[0]] else: print 'Wrong sampling method passed in the -g argument. Options: NONE, SAMPLEI, SAMPLEP' sys.exit() #FOR RESULTS FILE sampling_to_use.writeFile(f) des_vector_sampled = sampling_to_use.sampleKeypoints(des_vector) print 'Total number of features after sampling = ' + str( len(des_vector_sampled)) f.write('Total number of features after sampling = ' + str(len(des_vector_sampled)) + '\n') print 'Images and keypoints sampled...' else: print 'No sampling method chosen' #FOR RESULTS FILE f.write( "No method of keypoint sampling chosen. Use all keypoints for codebook construction \n" ) des_vector_sampled = des_vector ################################################################# # # Codebook computation # ################################################################# print 'Obtaining codebook...' #save current time start_time = time.time() #Get detector classes codebook_kmeans = KMeans1.KMeans1(size) codebook_birch = Birch.Birch(size) codebook_minibatch = minibatch.MiniBatch(size) codebook_randomv = randomSamplesBook.RandomVectors(size) codebook_allrandom = allrandom.AllRandom(size) names_codebook = np.array( ["KMEANS", "BIRCH", "MINIBATCH", "RANDOMV", "RANDOM"]) codebook_algorithm = np.array([ codebook_kmeans, codebook_birch, codebook_minibatch, codebook_randomv, codebook_allrandom ]) #Get the codebook algorithm passed in the -c argument index = np.where(names_codebook == codebook)[0] if index.size > 0: codebook_to_use = codebook_algorithm[index[0]] else: print 'Wrong codebook construction algorithm name passed in the -c argument. Options: KMEANS, MINIBATCH, RANDOMV and RANDOM' sys.exit() #FOR RESULTS FILE codebook_to_use.writeFileCodebook(f) #Get centers and projections using codebook algorithm ceters, projections = codebook_to_use.obtainCodebook( des_vector_sampled, des_vector) elapsed_time = (time.time() - start_time) print 'Time to compute codebook = ' + str(elapsed_time) f.write('Time to compute codebook = ' + str(elapsed_time) + '\n') ################################################################# # # Obtain Histogram # ################################################################# print 'Obtaining histograms...' #print 'projection shape = '+ str(projections.shape) #print 'size = ' + str(size) #print 'n of images = ' + str(n_images) #print 'number of kp' + str(number_of_kp) hist = histogram.computeHist(projections, size, n_images, number_of_kp) print hist print 'Histograms obtained' ################################################################ # # Feature selection # ################################################################# print 'Number of visual words = ' + str(len(hist[0])) if fselec != "NONE": print 'Applying feature selection to descriptors...' filter_max = filterMax.WordFilterMax(fselec_perc[0]) filter_min = filterMin.WordFilterMin(fselec_perc[1]) filter_maxmin = filterMaxMin.WordFilterMaxMin( fselec_perc[0], fselec_perc[1]) names_filter = np.array(["FMAX", "FMIN", "FMAXMIN"]) filter_method = np.array([filter_max, filter_min, filter_maxmin]) #Get the feature selection method passed in the -f argument index = np.where(names_filter == fselec)[0] if index.size > 0: filter_to_use = filter_method[index[0]] else: print 'Wrong codebook construction algorithm name passed in the -f argument. Options: NONE, FMAX, FMIN, FMAXMIN' sys.exit() hist = filter_to_use.applyFilter(hist, size, n_images) #FOR RESULTS FILE filter_to_use.writeFile(f) new_size = hist.shape[1] print 'Visual words Filtered' print 'Number of visual words filtered = ' + str(size - new_size) f.write("Number of visual words filtered = " + str(size - new_size) + '\n') print 'Final number of visual words = ' + str(new_size) f.write('Final number of visual words = ' + str(new_size) + '\n') else: #FOR RESULTS FILE filter_min = filterMin.WordFilterMin(0) hist = filter_min.applyFilter(hist, size, n_images) new_size = hist.shape[1] print 'Number of visual words filtered = ' + str(size - new_size) f.write("No feature selection applied \n") ################################################################# # # Histogram Normalization # ################################################################# if histnorm != "NONE": #Get detector classes norm_sbin = simpleBinarization.SimpleBi() norm_tfnorm = tfnorm.Tfnorm() norm_tfidf = tfidf.TfIdf() norm_tfidf2 = tfidf2.TfIdf2() norm_tfidfnorm = tfidfnorm.TfIdfnorm() norm_okapi = okapi.Okapi(average_words) norm_power = powerNorm.PowerNorm() names_normalization = np.array([ "SBIN", "TFNORM", "TFIDF", "TFIDF2", "TFIDFNORM", "OKAPI", "POWER" ]) normalization_method = np.array([ norm_sbin, norm_tfnorm, norm_tfidf, norm_tfidf2, norm_tfidfnorm, norm_okapi, norm_power ]) #Get the detector passed in the -h argument index = np.where(names_normalization == histnorm)[0] if index.size > 0: normalization_to_use = normalization_method[index[0]] new_hist = normalization_to_use.normalizeHist( hist, new_size, n_images) else: print 'Wrong normalization name passed in the -h argument. Options: SBIN, TFNORM, TFIDF and TFIDF2' sys.exit() #FOR RESULTS FILE normalization_to_use.writeFile(f) else: #FOR RESULTS FILE f.write("No histogram normalization applied\n") new_hist = hist ################################################################# # # Clustering of the features # ################################################################# #save current time start_time = time.time() #Get detector classes clust_dbscan = Dbscan.Dbscan(dist) clust_kmeans = KMeans1.KMeans1([nclusters]) clust_birch = Birch.Birch(nclusters) clust_meanSift = meanSift.MeanSift(nclusters) clust_hierar1 = hierarchicalClustering.Hierarchical(nclusters, dist) clust_hierar2 = hierarchicalClustScipy.HierarchicalScipy(dist) clust_community = communityDetection.CommunityDetection(dist) names_clustering = np.array([ "DBSCAN", "KMEANS", "BIRCH", "MEANSIFT", "HIERAR1", "HIERAR2", "COMM" ]) clustering_algorithm = np.array([ clust_dbscan, clust_kmeans, clust_birch, clust_meanSift, clust_hierar1, clust_hierar2, clust_community ]) #Get the detector passed in the -a argument index = np.where(names_clustering == clust)[0] if index.size > 0: clustering_to_use = clustering_algorithm[index[0]] else: print 'Wrong clustering algorithm name passed in the -a argument. Options: DBSCAN, KMEANS, BIRCH, MEANSIFT, HIERAR1, HIERAR2, COMM' sys.exit() clusters = clustering_to_use.obtainClusters(new_hist) #FOR RESULTS FILE clustering_to_use.writeFileCluster(f) elapsed_time = (time.time() - start_time) print 'Time to run clustering algorithm = ' + str(elapsed_time) f.write('Time to run clustering algorithm = ' + str(elapsed_time) + '\n') print 'Number of clusters obtained = ' + str(max(clusters) + 1) f.write('Number of clusters obtained = ' + str(max(clusters) + 1) + '\n') nclusters = max(clusters) + 1 print 'Clusters obtained = ' + str(np.asarray(clusters)) #date_time = datetime.datetime.now().strftime('%b-%d-%I%M%p-%G') #np.savetxt('saveClusters_'+date_time+'_.txt', clusters, '%i', ',') #ADDED ################################################################# # # Create folder with central images for each cluster # ################################################################# #obtain representative images for each cluster central_ims = clust_community.obtainCenteralImages(new_hist, clusters) central_folder = os.path.join(dir_results, 'CenterImages') if not os.path.exists(central_folder): os.makedirs(central_folder) count = 0 for central_im in central_ims: filename = os.path.join(central_folder, 'Cluster_' + str(count) + '.jpg') img = cv2.imread(imPaths[central_im], 1) cv2.imwrite(filename, img) count = count + 1 #ADDED ################################################################# # # Separate Clusters into folders # ################################################################# clusters_folder = os.path.join(dir_results, 'Clusters') if not os.path.exists(clusters_folder): os.makedirs(clusters_folder) clust_dir = [] for iclust in range(0, nclusters): direc = os.path.join(clusters_folder, 'Cluster_' + str(iclust)) if not os.path.exists(direc): os.makedirs(direc) clust_dir.append(direc) for im in range(0, len(imPaths)): im_name = imPaths[im].split('/')[-1] #print clust_dir[int(clusters[im])] filename = os.path.join(clust_dir[int(clusters[im])], im_name) #print filename img = cv2.imread(imPaths[im], 1) cv2.imwrite(filename, img) ################################################################# # # Evaluation # ################################################################# users = 0 if users == 1: rand_index = evaluationUsers.randIndex(clusters) rand_indexes.append(rand_index) print 'rand_index = ' + str(rand_index) f.write("Rand Index = " + str(rand_index) + "\n") else: if len(clusters) == len(labels): f.write("\nResults\n") f.write('Clusters Obtained = ' + str(np.asarray(clusters))) f.write('Labels = ' + str(np.asarray(labels))) rand_index = metrics.adjusted_rand_score(labels, clusters) rand_indexes.append(rand_index) print 'rand_index = ' + str(rand_index) f.write("Rand Index = " + str(rand_index) + "\n") NMI_index = metrics.normalized_mutual_info_score( labels, clusters) nmi_indexes.append(NMI_index) print 'NMI_index = ' + str(NMI_index) f.write("NMI Index = " + str(NMI_index) + "\n") if rep > 1: f.write("\nFINAL RESULTS\n") f.write("Avg Rand Index = " + str(float(sum(rand_indexes)) / rep) + "\n") f.write("Std Rand Index = " + str(statistics.stdev(rand_indexes)) + "\n") if users != 1: f.write("Avg NMI Index = " + str(float(sum(nmi_indexes)) / rep) + "\n") f.write("Std NMI Index = " + str(statistics.stdev(nmi_indexes)) + "\n") f.close()
################################################################# # # Codebook computation # ################################################################# print 'Obtaining codebook...' #save current time start_time = time.time() #Get detector classes codebook_kmeans = KMeans1.KMeans1(size) codebook_birch = Birch.Birch(size) codebook_minibatch = minibatch.MiniBatch(size) codebook_randomv = randomSamplesBook.RandomVectors(size) codebook_allrandom = allrandom.AllRandom(size) names_codebook = np.array( ["KMEANS", "BIRCH", "MINIBATCH", "RANDOMV", "RANDOM"]) codebook_algorithm = np.array([ codebook_kmeans, codebook_birch, codebook_minibatch, codebook_randomv, codebook_allrandom ]) #Get the detector passed in the -c argument index = np.where(names_codebook == codebook)[0] if index.size > 0: codebook_to_use = codebook_algorithm[index[0]] else:
def run(pathImages, method, keypnt, numpatch, equalnum, imdes, imsample, percentage, codebook, dist, size, fselec, fselec_perc, histnorm, clust, K, pca, nclusters, rep): ################################################################# # # Initializations and result file configurations # ################################################################# im_dataset_name = pathImages.split('/')[-1] date_time = datetime.datetime.now().strftime('%b-%d-%I%M%p-%G') name_results_file = 'BOF_' + im_dataset_name + '_' + keypnt + '_' + str( numpatch ) + '_' + str( equalnum ) + '_' + imdes + '_' + imsample + '_' + codebook + '_' + str( size ) + '_' + fselec + '_' + histnorm + '_' + clust + '_' + dist + '_' + date_time #dir_results = 'Results_' + im_dataset_name + '_BOF_' + date_time dir_results = 'Results_BOF' if not os.path.exists(dir_results): os.makedirs(dir_results) file_count = 2 file_name = os.path.join(dir_results, name_results_file) while os.path.exists(file_name + ".txt"): file_name = os.path.join(dir_results, name_results_file) + "_" + str(file_count) file_count = file_count + 1 f = open(file_name + ".txt", 'w') ################################################################# # # Get images # ################################################################# #pathImages = '/Users/Mariana/mieec/Tese/Development/ImageDatabases/Graz-01_sample' imList = get_imlist(pathImages) print 'Number of images read = ' + str(len(imList)) f.write("Number of images in dataset read: " + str(len(imList)) + "\n") ################################################################# # # Image description # ################################################################# #Get detector classes det_sift = siftLib.Sift(numpatch, equalnum) det_surf = surfLib.Surf(numpatch, equalnum) det_fast = fastDetector.Fast(numpatch, equalnum) det_star = starDetector.Star(numpatch, equalnum) det_orb = orbLib.Orb(numpatch, equalnum) det_random = randomDetector.Random(numpatch) names_detectors = np.array( ["SIFT", "SURF", "FAST", "STAR", "ORB", "RANDOM"]) detectors = np.array( [det_sift, det_surf, det_fast, det_star, det_orb, det_random]) #Get the detector passed in the -k argument index = np.where(names_detectors == keypnt)[0] if index.size > 0: detector_to_use = detectors[index[0]] else: print 'Wrong detector name passed in the -k argument. Options: SIFT, SURF, FAST, STAR, ORB and RANDOM' sys.exit() #FOR RESULTS FILE detector_to_use.writeParametersDet(f) #Get descriptor classes des_sift = siftLib.Sift(numpatch, equalnum) des_surf = surfLib.Surf(numpatch, equalnum) des_orb = orbLib.Orb(numpatch) des_brief = briefDescriptor.Brief() des_freak = freakDescriptor.Freak() names_descriptors = np.array(["SIFT", "SURF", "ORB", "BRIEF", "FREAK"]) descriptors = np.array([des_sift, des_surf, des_orb, des_brief, des_freak]) #Get the detector passed in the -d argument index = np.where(names_descriptors == imdes)[0] if index.size > 0: descriptor_to_use = descriptors[index[0]] else: print 'Wrong descriptor name passed in the -d argument. Options: SIFT, SURF, ORB, BRIEF and FREAK' sys.exit() #FOR RESULTS FILE descriptor_to_use.writeParametersDes(f) kp_vector = [] #vector with the keypoints object des_vector = [ ] #vector wih the descriptors (in order to obtain the codebook) number_of_kp = [] #vector with the number of keypoints per image counter = 1 #save current time start_time = time.time() labels = [] class_names = [] #ADDED imPaths = [] #detect the keypoints and compute the sift descriptors for each image for im in imList: if 'DS_Store' not in im: #ADDED imPaths.append(im) print 'image: ' + str(im) + ' number: ' + str(counter) #read image img = cv2.imread(im, 0) #mask in order to avoid keypoints in border of image. size = 40 pixels border = 40 height, width = img.shape mask = np.zeros(img.shape, dtype=np.uint8) mask[border:height - border, border:width - border] = 1 #get keypoints from detector kp = detector_to_use.detectKp(img, mask) #get features from descriptor des = descriptor_to_use.computeDes(img, kp) number_of_kp.append(len(kp)) kp_vector.append(kp) if counter == 1: des_vector = des else: des_vector = np.concatenate((des_vector, des), axis=0) counter += 1 #for evaluation name1 = im.split("/")[-1] name = name1.split("_")[0] if name in class_names: index = class_names.index(name) labels.append(index) else: class_names.append(name) index = class_names.index(name) labels.append(index) #measure the time to compute the description of each image (divide time elapsed by # of images) elapsed_time = (time.time() - start_time) / len(imList) print 'Time to compute detector and descriptor for each image = ' + str( elapsed_time) f.write( 'Average time to compute detector and descriptor for each image = ' + str(elapsed_time) + '\n') n_images = len(kp_vector) average_words = sum(number_of_kp) / float(len(number_of_kp)) print 'Total number of features = ' + str(len(des_vector)) f.write('Total number of features obtained = ' + str(len(des_vector)) + '\n') print 'Average number of keypoints per image = ' + str(average_words) f.write('Average number of keypoints per image = ' + str(average_words) + '\n') ################################################################# # # Dimentionality reduction # ################################################################# if pca != None: start_time = time.time() print 'Applying PCA...' pca = PCA(n_components=pca) descriptors_reduced = pca.fit(des_vector).transform(des_vector) print 'PCA Applied.' print 'time to apply PCA = ' + str(time.time() - start_time) des_vector = descriptors_reduced ################################################################# # # Image and Keypoint sampling # ################################################################# rand_indexes = [] nmi_indexes = [] for iteraction in range(0, rep): print "\nIteraction #" + str(iteraction + 1) + '\n' f.write("\nIteraction #" + str(iteraction + 1) + '\n') print 'Sampling images and keypoints prior to codebook computation...' if imsample != "NONE": sampleKp = sampleKeypoints.SamplingImandKey( n_images, number_of_kp, average_words, percentage) sampleallKp = sampleAllKeypoints.SamplingAllKey(percentage) names_sampling = np.array(["SAMPLEI", "SAMPLEP"]) sample_method = np.array([sampleKp, sampleallKp]) #Get the detector passed in the -g argument index = np.where(names_sampling == imsample)[0] if index.size > 0: sampling_to_use = sample_method[index[0]] else: print 'Wrong sampling method passed in the -g argument. Options: NONE, SAMPLEI, SAMPLEP' sys.exit() #FOR RESULTS FILE sampling_to_use.writeFile(f) des_vector_sampled = sampling_to_use.sampleKeypoints(des_vector) print 'Total number of features after sampling = ' + str( len(des_vector_sampled)) f.write('Total number of features after sampling = ' + str(len(des_vector_sampled)) + '\n') print 'Images and keypoints sampled...' else: print 'No sampling method chosen' #FOR RESULTS FILE f.write( "No method of keypoint sampling chosen. Use all keypoints for codebook construction \n" ) des_vector_sampled = des_vector ################################################################# # # Codebook computation # ################################################################# print 'Obtaining codebook...' #save current time start_time = time.time() #Get detector classes codebook_kmeans = KMeans1.KMeans1(size) codebook_birch = Birch.Birch(size) codebook_minibatch = minibatch.MiniBatch(size) codebook_randomv = randomSamplesBook.RandomVectors(size) codebook_allrandom = allrandom.AllRandom(size) names_codebook = np.array( ["KMEANS", "BIRCH", "MINIBATCH", "RANDOMV", "RANDOM"]) codebook_algorithm = np.array([ codebook_kmeans, codebook_birch, codebook_minibatch, codebook_randomv, codebook_allrandom ]) #Get the detector passed in the -c argument index = np.where(names_codebook == codebook)[0] if index.size > 0: codebook_to_use = codebook_algorithm[index[0]] else: print 'Wrong codebook construction algorithm name passed in the -c argument. Options: KMEANS, MINIBATCH, RANDOMV and RANDOM' sys.exit() #FOR RESULTS FILE codebook_to_use.writeFileCodebook(f) #Get centers and projections using codebook algorithm centers, projections = codebook_to_use.obtainCodebook( des_vector_sampled, des_vector) #compute the number of unique descriptor vectors codebook_randomv.unique_vectors(centers) elapsed_time = (time.time() - start_time) print 'Time to compute codebook = ' + str(elapsed_time) f.write('Time to compute codebook = ' + str(elapsed_time) + '\n') ################################################################# # # Obtain Histogram # ################################################################# print 'Obtaining histograms...' #print 'projection shape = '+ str(projections.shape) #print 'size = ' + str(size) #print 'n of images = ' + str(n_images) #print 'number of kp' + str(number_of_kp) hist = histogram.computeHist(projections, size, n_images, number_of_kp) #print hist print 'Histograms obtained' ################################################################ # # Feature selection # ################################################################# print 'Number of visual words = ' + str(len(hist[0])) if fselec != "NONE": print 'Applying feature selection to descriptors...' filter_max = filterMax.WordFilterMax(fselec_perc[0]) filter_min = filterMin.WordFilterMin(fselec_perc[1]) filter_maxmin = filterMaxMin.WordFilterMaxMin( fselec_perc[0], fselec_perc[1]) names_filter = np.array(["FMAX", "FMIN", "FMAXMIN"]) filter_method = np.array([filter_max, filter_min, filter_maxmin]) #Get the detector passed in the -f argument index = np.where(names_filter == fselec)[0] if index.size > 0: filter_to_use = filter_method[index[0]] else: print 'Wrong codebook construction algorithm name passed in the -f argument. Options: NONE, FMAX, FMIN, FMAXMIN' sys.exit() hist = filter_to_use.applyFilter(hist, size, n_images) #FOR RESULTS FILE filter_to_use.writeFile(f) new_size = hist.shape[1] print 'Visual words Filtered' print 'Number of visual words filtered = ' + str(size - new_size) f.write("Number of visual words filtered = " + str(size - new_size) + '\n') print 'Final number of visual words = ' + str(new_size) f.write('Final number of visual words = ' + str(new_size) + '\n') else: #FOR RESULTS FILE filter_min = filterMin.WordFilterMin(0) hist = filter_min.applyFilter(hist, size, n_images) new_size = hist.shape[1] print 'Number of visual words filtered = ' + str(size - new_size) f.write("No feature selection applied \n") ################################################################# # # Histogram Normalization # ################################################################# if histnorm != "NONE": #Get detector classes norm_sbin = simpleBinarization.SimpleBi() norm_tfnorm = tfnorm.Tfnorm() norm_tfidf = tfidf.TfIdf() norm_tfidf2 = tfidf2.TfIdf2() norm_tfidf3 = tfidf3.Tfidf3() norm_power = powerNorm.PowerNorm() norm_tfidfnorm = tfidfnorm.TfIdfnorm() norm_okapi = okapi.Okapi(average_words) names_normalization = np.array( ["SBIN", "TFNORM", "TFIDF", "TFIDF2", "TFIDFNORM", "OKAPI"]) normalization_method = np.array([ norm_sbin, norm_tfnorm, norm_tfidf, norm_tfidf2, norm_tfidfnorm, norm_okapi ]) #Get the detector passed in the -h argument index = np.where(names_normalization == histnorm)[0] if index.size > 0: normalization_to_use = normalization_method[index[0]] new_hist = normalization_to_use.normalizeHist( hist, new_size, n_images) else: print 'Wrong normalization name passed in the -h argument. Options: SBIN, TFNORM, TFIDF and TFIDF2' sys.exit() #FOR RESULTS FILE normalization_to_use.writeFile(f) else: #FOR RESULTS FILE f.write("No histogram normalization applied\n") new_hist = hist ################################################################# # # Clustering of the features # ################################################################# #save current time start_time = time.time() #Get detector classes clust_dbscan = Dbscan.Dbscan(dist) clust_kmeans = KMeans1.KMeans1([nclusters]) clust_kmeans2 = kmeans2.KMeans2([nclusters]) clust_birch = Birch.Birch(nclusters) clust_meanSift = meanSift.MeanSift(nclusters) clust_hierar1 = hierarchicalClustering.Hierarchical(nclusters, dist) clust_hierar2 = hierarchicalClustScipy.HierarchicalScipy(dist) clust_community = communityDetection.CommunityDetection(dist) names_clustering = np.array([ "DBSCAN", "KMEANS", "BIRCH", "MEANSIFT", "HIERAR1", "HIERAR2", "COMM" ]) clustering_algorithm = np.array([ clust_dbscan, clust_kmeans, clust_birch, clust_meanSift, clust_hierar1, clust_hierar2, clust_community ]) #Get the detector passed in the -a argument index = np.where(names_clustering == clust)[0] if index.size > 0: clustering_to_use = clustering_algorithm[index[0]] else: print 'Wrong clustering algorithm name passed in the -a argument. Options: DBSCAN, KMEANS, BIRCH, MEANSIFT, HIERAR1, HIERAR2, COMM' sys.exit() clusters = clustering_to_use.obtainClusters(new_hist) #FOR RESULTS FILE clustering_to_use.writeFileCluster(f) elapsed_time = (time.time() - start_time) print 'Time to run clustering algorithm = ' + str(elapsed_time) f.write('Time to run clustering algorithm = ' + str(elapsed_time) + '\n') #ADDED nclusters = int(max(clusters) + 1) print 'Number of clusters obtained = ' + str(max(clusters) + 1) f.write('Number of clusters obtained = ' + str(max(clusters) + 1) + '\n') print 'Clusters obtained = ' + str(np.asarray(clusters)) #date_time = datetime.datetime.now().strftime('%b-%d-%I%M%p-%G') #np.savetxt('saveClusters_'+date_time+'_.txt', clusters, '%i', ',') #ADDED ################################################################# # # Create folder with central images for each cluster # ################################################################# ###obtain representative images for each cluster #central_ims = clust_community.obtainCenteralImages(new_hist, clusters) #central_folder = os.path.join(dir_results,'CenterImages') #if not os.path.exists(central_folder): #os.makedirs(central_folder) #count=0 #for central_im in central_ims: #filename = os.path.join(central_folder,'Cluster_'+str(count)+'.jpg') #img = cv2.imread(imPaths[central_im],1) #cv2.imwrite(filename, img) #count = count + 1 ##ADDED ################################################################## ## ## Separate Clusters into folders ## ################################################################## #clusters_folder = os.path.join(dir_results,'Clusters') #if not os.path.exists(clusters_folder): #os.makedirs(clusters_folder) #clust_dir = [] #for iclust in range(0,nclusters): #direc = os.path.join(clusters_folder,'Cluster_'+str(iclust)) #if not os.path.exists(direc): #os.makedirs(direc) #clust_dir.append(direc) #for im in range(0,len(imPaths)): #im_name = imPaths[im].split('/')[-1] ##print clust_dir[int(clusters[im])] #filename = os.path.join(clust_dir[int(clusters[im])],im_name) ##print filename #img = cv2.imread(imPaths[im],1) #cv2.imwrite(filename, img) ##calculate distances between images and closest images #closest_im = distances.calculateClosest(new_hist,dist) ##print closest_im #if not os.path.exists('ClosestImages'): #os.makedirs('ClosestImages') #file_name = os.path.join('ClosestImages',name_results_file) #f2 = open(file_name + ".txt", 'w') #counter = 0 #counter2 = 1 #for ims in closest_im: #for im in ims: #f2.write(str(counter2) + '-' + str(counter) + '-' + str(im) + '\n') #counter2 = counter2 + 1 #counter = counter + 1 #f2.close() ################################################################# # # Evaluation # ################################################################# users = 0 #labels = np.load('IndividualClustersMatrix.npy') if users == 1: rand_index = evaluationUsers.randIndex(clusters) rand_indexes.append(rand_index) print 'rand_index = ' + str(rand_index) f.write("Rand Index = " + str(rand_index) + "\n") else: if len(clusters) == len(labels): f.write("\nResults\n") f.write('Clusters Obtained = ' + str(np.asarray(clusters))) f.write('Labels = ' + str(np.asarray(labels))) rand_index = metrics.adjusted_rand_score(labels, clusters) rand_indexes.append(rand_index) print 'rand_index = ' + str(rand_index) f.write("Rand Index = " + str(rand_index) + "\n") NMI_index = metrics.normalized_mutual_info_score( labels, clusters) nmi_indexes.append(NMI_index) print 'NMI_index = ' + str(NMI_index) f.write("NMI Index = " + str(NMI_index) + "\n") if rep > 1: f.write("\nFINAL RESULTS\n") f.write("Avg Rand Index = " + str(float(sum(rand_indexes)) / rep) + "\n") f.write("Std Rand Index = " + str(statistics.stdev(rand_indexes)) + "\n") if users != 1: f.write("Avg NMI Index = " + str(float(sum(nmi_indexes)) / rep) + "\n") f.write("Std NMI Index = " + str(statistics.stdev(nmi_indexes)) + "\n") f.close()
def run(pathImages, method, keypnt, numpatch, equalnum, imdes, imsample, percentage, codebook, dist, size, fselec, fselec_perc, histnorm, clust, K, pca, nclusters, rep, levels): ################################################################# # # Initializations and result file configurations # ################################################################# #warnings.simplefilter("error") if os.path.exists('save_HIST.txt') == True: os.remove('save_HIST.txt') if os.path.exists('save_dist.txt') == True: os.remove('save_dist.txt') if os.path.exists('saveClustersKmeans.txt') == True: os.remove('saveClustersKmeans.txt') im_dataset_name = pathImages.split('/')[-1] date_time = datetime.datetime.now().strftime('%b-%d-%I%M%p-%G') name_results_file = im_dataset_name + '_' + keypnt + '_' + str( numpatch ) + '_' + str(equalnum) + '_' + imdes + '_' + 'levels:' + str( levels ) + '_' + imsample + '_' + codebook + '_' + str( size ) + '_' + fselec + '_' + histnorm + '_' + clust + '_' + dist + '_' + date_time #dir_results = 'Results_' + im_dataset_name + '_SPM_' + date_time dir_results = 'Results_SPM' if not os.path.exists(dir_results): os.makedirs(dir_results) file_count = 2 file_name = os.path.join(dir_results, name_results_file) while os.path.exists(file_name + ".txt"): file_name = os.path.join(dir_results, name_results_file) + "_" + str(file_count) file_count = file_count + 1 f = open(file_name + ".txt", 'w') ################################################################# # # Get images # ################################################################# #pathImages = '/Users/Mariana/mieec/Tese/Development/ImageDatabases/Graz-01_sample' imList = get_imlist(pathImages) print 'Number of images read = ' + str(len(imList)) f.write("Number of images in dataset read: " + str(len(imList)) + "\n") ################################################################# # # Image description # ################################################################# #Number of regions n_regions = np.power(4, levels - 1) #Get detector classes det_sift = siftLib.Sift(numpatch / n_regions, equalnum) det_surf = surfLib.Surf(numpatch / n_regions, equalnum) det_fast = fastDetector.Fast(numpatch / n_regions, equalnum) det_star = starDetector.Star(numpatch / n_regions, equalnum) det_orb = orbLib.Orb(numpatch / n_regions, equalnum) det_random = randomDetector.Random(numpatch / n_regions) names_detectors = np.array( ["SIFT", "SURF", "FAST", "STAR", "ORB", "RANDOM"]) detectors = np.array( [det_sift, det_surf, det_fast, det_star, det_orb, det_random]) #Get the detector passed in the -k argument index = np.where(names_detectors == keypnt)[0] if index.size > 0: detector_to_use = detectors[index[0]] else: print 'Wrong detector name passed in the -k argument. Options: SIFT, SURF, FAST, STAR, ORB and RANDOM' sys.exit() #FOR RESULTS FILE detector_to_use.writeParametersDet(f) #Get descriptor classes des_sift = siftLib.Sift(numpatch / n_regions, equalnum) des_surf = surfLib.Surf(numpatch / n_regions, equalnum) des_orb = orbLib.Orb(numpatch / n_regions) des_brief = briefDescriptor.Brief() des_freak = freakDescriptor.Freak() names_descriptors = np.array(["SIFT", "SURF", "ORB", "BRIEF", "FREAK"]) descriptors = np.array([des_sift, des_surf, des_orb, des_brief, des_freak]) #Get the detector passed in the -d argument index = np.where(names_descriptors == imdes)[0] if index.size > 0: descriptor_to_use = descriptors[index[0]] else: print 'Wrong descriptor name passed in the -d argument. Options: SIFT, SURF, ORB, BRIEF and FREAK' sys.exit() #FOR RESULTS FILE descriptor_to_use.writeParametersDes(f) kp_vector = [] #vector with the keypoints object des_vector = [ ] #vector wih the descriptors (in order to obtain the codebook) number_of_kp = [] #vector with the number of keypoints per image counter = 1 #save current time start_time = time.time() labels = [] class_names = [] #Border border = 40 side = int(np.sqrt(n_regions)) des_vector_byregion = [0] * n_regions number_of_kp_region = [0] * n_regions filled = [0] * n_regions #matrixes of the indexes mat_indexes = np.array([[0, 1, 4, 5, 16, 17, 20, 21], [2, 3, 6, 7, 18, 19, 22, 23], [8, 9, 12, 13, 24, 25, 28, 29], [10, 11, 14, 15, 26, 27, 30, 31], [32, 33, 36, 37, 48, 49, 52, 53], [34, 35, 38, 39, 50, 51, 54, 55], [40, 41, 44, 45, 56, 57, 60, 61], [42, 43, 46, 47, 58, 59, 62, 63]]) #detect the keypoints and compute the sift descriptors for each image for im in imList: if 'DS_Store' not in im: print 'image: ' + str(im) + ' number: ' + str(counter) #read image img = cv2.imread(im, 0) # region for i in range(0, side): for j in range(0, side): #mask in order to avoid keypoints in border of image. size = 40 pixels height, width = img.shape h_region = (height - 2 * border) / np.sqrt(n_regions) w_region = (width - 2 * border) / np.sqrt(n_regions) mask = np.zeros(img.shape, dtype=np.uint8) mask[border + i * h_region:border + (i + 1) * h_region, border + j * w_region:border + (j + 1) * w_region] = 1 #get keypoints from detector kp = detector_to_use.detectKp(img, mask) #get features from descriptor des = descriptor_to_use.computeDes(img, kp) number_of_kp.append(len(kp)) #print i*np.sqrt(n_regions)+j #print number_of_kp_region[int(i*np.sqrt(n_regions)+j)] if filled[mat_indexes[i, j]] == 1: #descriptors of all the regions (in a list) des_vector_byregion[mat_indexes[ i, j]] = np.concatenate( (des_vector_byregion[mat_indexes[i, j]], des), axis=0) #number of descriptors in each region number_of_kp_region[mat_indexes[ i, j]] = np.concatenate( (number_of_kp_region[mat_indexes[i, j]], np.array([len(kp)])), axis=0) else: des_vector_byregion[mat_indexes[i, j]] = des number_of_kp_region[mat_indexes[i, j]] = np.array( [len(kp)]) filled[mat_indexes[i, j]] = 1 #print des_vector_byregion #print number_of_kp_region #for evaluation name1 = im.split("/")[-1] name = name1.split("_")[0] if name in class_names: index = class_names.index(name) labels.append(index) else: class_names.append(name) index = class_names.index(name) labels.append(index) counter += 1 #measure the time to compute the description of each image (divide time elapsed by # of images) elapsed_time = (time.time() - start_time) / len(imList) print 'Time to compute detector and descriptor for each image = ' + str( elapsed_time) f.write( 'Average time to compute detector and descriptor for each image = ' + str(elapsed_time) + '\n') n_images = counter - 1 average_words = sum(number_of_kp) / float(len(number_of_kp)) #all the descriptors together des_vector = np.concatenate(np.array(des_vector_byregion)) print 'Total number of features = ' + str(len(des_vector)) f.write('Total number of features obtained = ' + str(len(des_vector)) + '\n') print 'Average number of keypoints per image = ' + str(average_words) f.write('Average number of keypoints per image = ' + str(average_words) + '\n') ################################################################# # # Image and Keypoint sampling # ################################################################# rand_indexes = [] nmi_indexes = [] for iteraction in range(0, rep): print "\nIteraction #" + str(iteraction + 1) + '\n' f.write("\nIteraction #" + str(iteraction + 1) + '\n') print 'Sampling images and keypoints prior to codebook computation...' if imsample != "NONE": sampleKp = sampleKeypoints.SamplingImandKey( n_images, number_of_kp, average_words, percentage) sampleallKp = sampleAllKeypoints.SamplingAllKey(percentage) names_sampling = np.array(["SAMPLEI", "SAMPLEP"]) sample_method = np.array([sampleKp, sampleallKp]) #Get the detector passed in the -g argument index = np.where(names_sampling == imsample)[0] if index.size > 0: sampling_to_use = sample_method[index[0]] else: print 'Wrong sampling method passed in the -g argument. Options: NONE, SAMPLEI, SAMPLEP' sys.exit() #FOR RESULTS FILE sampling_to_use.writeFile(f) des_vector_sampled = sampling_to_use.sampleKeypoints(des_vector) print 'Total number of features after sampling = ' + str( len(des_vector_sampled)) f.write('Total number of features after sampling = ' + str(len(des_vector_sampled)) + '\n') print 'Images and keypoints sampled...' else: print 'No sampling method chosen' #FOR RESULTS FILE f.write( "No method of keypoint sampling chosen. Use all keypoints for codebook construction \n" ) des_vector_sampled = des_vector ################################################################# # # Codebook computation # ################################################################# print 'Obtaining codebook...' #save current time start_time = time.time() #Get detector classes codebook_kmeans = KMeans1.KMeans1(size) codebook_birch = Birch.Birch(size) codebook_minibatch = minibatch.MiniBatch(size) codebook_randomv = randomSamplesBook.RandomVectors(size) codebook_allrandom = allrandom.AllRandom(size) names_codebook = np.array( ["KMEANS", "BIRCH", "MINIBATCH", "RANDOMV", "RANDOM"]) codebook_algorithm = np.array([ codebook_kmeans, codebook_birch, codebook_minibatch, codebook_randomv, codebook_allrandom ]) #Get the detector passed in the -c argument index = np.where(names_codebook == codebook)[0] if index.size > 0: codebook_to_use = codebook_algorithm[index[0]] else: print 'Wrong codebook construction algorithm name passed in the -c argument. Options: KMEANS, MINIBATCH, RANDOMV and RANDOM' sys.exit() #FOR RESULTS FILE codebook_to_use.writeFileCodebook(f) #Get centers and projections using codebook algorithm centers, projections = codebook_to_use.obtainCodebook( des_vector_sampled, des_vector) #compute the number of unique descriptor vectors codebook_randomv.unique_vectors(centers) elapsed_time = (time.time() - start_time) print 'Time to compute codebook = ' + str(elapsed_time) f.write('Time to compute codebook = ' + str(elapsed_time) + '\n') ################################################################# # # Obtain Histogram # ################################################################# des_byregion = des_vector_byregion numkp_region = number_of_kp_region hist_total = [] for level in range(levels - 1, -1, -1): print 'Level = ' + str(level) n_regions = np.power(4, level) for i in range(0, n_regions): print 'Obtaining histograms...' #print 'projection shape = '+ str(projections.shape) #print 'size = ' + str(size) #print 'n of images = ' + str(n_images) #print 'number of kp' + str(number_of_kp) #print len(des_vector_byregion) #print len(des_vector_byregion[0]) #print len(des_vector_byregion[0][0]) result = scipy.cluster.vq.vq(np.array(des_byregion[i]), centers) projections_region = result[0] #print 'projections = ' + str(projections_region) #print n_images #print number_of_kp_region[i] #print len(number_of_kp_region) #print len(number_of_kp_region[0]) hist = histogram.computeHist(projections_region, size, n_images, numkp_region[i]) #print hist print 'Histograms obtained' #print hist ################################################################ # # Feature selection # ################################################################# print 'Number of visual words = ' + str(len(hist[0])) if fselec != "NONE": print 'Applying feature selection to descriptors...' filter_max = filterMax.WordFilterMax(fselec_perc[0]) filter_min = filterMin.WordFilterMin(fselec_perc[1]) filter_maxmin = filterMaxMin.WordFilterMaxMin( fselec_perc[0], fselec_perc[1]) names_filter = np.array(["FMAX", "FMIN", "FMAXMIN"]) filter_method = np.array( [filter_max, filter_min, filter_maxmin]) #Get the detector passed in the -f argument index = np.where(names_filter == fselec)[0] if index.size > 0: filter_to_use = filter_method[index[0]] else: print 'Wrong codebook construction algorithm name passed in the -f argument. Options: NONE, FMAX, FMIN, FMAXMIN' sys.exit() hist = filter_to_use.applyFilter(hist, size, n_images) #FOR RESULTS FILE filter_to_use.writeFile(f) new_size = hist.shape[1] print 'Visual words Filtered' print 'Number of visual words filtered = ' + str(size - new_size) f.write("Number of visual words filtered = " + str(size - new_size) + '\n') print 'Final number of visual words = ' + str(new_size) f.write('Final number of visual words = ' + str(new_size) + '\n') else: #FOR RESULTS FILE filter_min = filterMin.WordFilterMin(0) hist = filter_min.applyFilter(hist, size, n_images) new_size = hist.shape[1] print 'Number of visual words filtered = ' + str(size - new_size) f.write("No feature selection applied \n") ################################################################# # # Histogram Normalization # ################################################################# if histnorm != "NONE": #Get detector classes norm_sbin = simpleBinarization.SimpleBi() norm_tfnorm = tfnorm.Tfnorm() norm_tfidf = tfidf.TfIdf() norm_tfidf2 = tfidf2.TfIdf2() norm_tfidfnorm = tfidfnorm.TfIdfnorm() norm_okapi = okapi.Okapi(average_words) names_normalization = np.array([ "SBIN", "TFNORM", "TFIDF", "TFIDF2", "TFIDFNORM", "OKAPI" ]) normalization_method = np.array([ norm_sbin, norm_tfnorm, norm_tfidf, norm_tfidf2, norm_tfidfnorm, norm_okapi ]) #Get the detector passed in the -h argument index = np.where(names_normalization == histnorm)[0] if index.size > 0: normalization_to_use = normalization_method[index[0]] new_hist = normalization_to_use.normalizeHist( hist, new_size, n_images) else: print 'Wrong normalization name passed in the -h argument. Options: SBIN, TFNORM, TFIDF and TFIDF2' sys.exit() #FOR RESULTS FILE normalization_to_use.writeFile(f) else: #FOR RESULTS FILE f.write("No histogram normalization applied\n") new_hist = hist hist_total.append(np.array(new_hist)) #concatenate des_vector_byregion TODOOOOOOOOOO des_vector_aux = [] number_of_kp_aux = [] if level != 0: side = 4 ntimes = int(np.power(4, level - 1)) for h in range(0, ntimes): #print len(des_byregion) #print h*side #print (h+1)*side des_vector_aux.append( np.concatenate(des_byregion[h * side:(h + 1) * side], axis=0)) count = 0 for n in numkp_region[h * side:(h + 1) * side]: if count != 0: sum_np = [sum(x) for x in zip(sum_np, n)] else: sum_np = n count = count + 1 number_of_kp_aux.append(sum_np) des_byregion = des_vector_aux numkp_region = number_of_kp_aux #print hist_total hist_total = np.concatenate(hist_total, axis=1) print len(hist_total[0]) ################################################################# # # Clustering of the features # ################################################################# #save current time start_time = time.time() #Get detector classes clust_dbscan = Dbscan.Dbscan(dist) clust_kmeans = KMeans1.KMeans1([nclusters]) clust_birch = Birch.Birch(nclusters) clust_meanSift = meanSift.MeanSift(nclusters) clust_hierar1 = hierarchicalClustering.Hierarchical(nclusters, dist) clust_hierar2 = hierarchicalClustScipy.HierarchicalScipy(dist) clust_community = communityDetection.CommunityDetection(dist) names_clustering = np.array([ "DBSCAN", "KMEANS", "BIRCH", "MEANSIFT", "HIERAR1", "HIERAR2", "COMM" ]) clustering_algorithm = np.array([ clust_dbscan, clust_kmeans, clust_birch, clust_meanSift, clust_hierar1, clust_hierar2, clust_community ]) #Get the detector passed in the -a argument index = np.where(names_clustering == clust)[0] if index.size > 0: clustering_to_use = clustering_algorithm[index[0]] else: print 'Wrong clustering algorithm name passed in the -a argument. Options: DBSCAN, KMEANS, BIRCH, MEANSIFT, HIERAR1, HIERAR2, COMM' sys.exit() clusters = clustering_to_use.obtainClusters(hist_total) #FOR RESULTS FILE clustering_to_use.writeFileCluster(f) elapsed_time = (time.time() - start_time) print 'Time to run clustering algorithm = ' + str(elapsed_time) f.write('Time to run clustering algorithm = ' + str(elapsed_time) + '\n') print 'Number of clusters obtained = ' + str(max(clusters) + 1) f.write('Number of clusters obtained = ' + str(max(clusters) + 1) + '\n') print 'Clusters obtained = ' + str(np.asarray(clusters)) #date_time = datetime.datetime.now().strftime('%b-%d-%I%M%p-%G') #np.savetxt('saveClusters_'+date_time+'_.txt', clusters, '%i', ',') ##ADDED ################################################################## ## ## Create folder with central images for each cluster ## ################################################################## #dir_results = 'Results_' + im_dataset_name + '_SPM_' + date_time ##obtain representative images for each cluster #central_ims = clust_community.obtainCenteralImages(new_hist, clusters) #central_folder = os.path.join(dir_results,'CenterImages') #if not os.path.exists(central_folder): #os.makedirs(central_folder) #count=0 #for central_im in central_ims: #filename = os.path.join(central_folder,'Cluster_'+str(count)+'.jpg') #img = cv2.imread(imPaths[central_im],1) #cv2.imwrite(filename, img) #count = count + 1 ##ADDED ################################################################## ## ## Separate Clusters into folders ## ################################################################## #clusters_folder = os.path.join(dir_results,'Clusters') #if not os.path.exists(clusters_folder): #os.makedirs(clusters_folder) #clust_dir = [] #for iclust in range(0,nclusters): #direc = os.path.join(clusters_folder,'Cluster_'+str(iclust)) #if not os.path.exists(direc): #os.makedirs(direc) #clust_dir.append(direc) #for im in range(0,len(imPaths)): #im_name = imPaths[im].split('/')[-1] ##print clust_dir[int(clusters[im])] #filename = os.path.join(clust_dir[int(clusters[im])],im_name) ##print filename #img = cv2.imread(imPaths[im],1) #cv2.imwrite(filename, img) ################################################################# # # Evaluation # ################################################################# users = 0 if users == 1: rand_index = evaluationUsers.randIndex(clusters) rand_indexes.append(rand_index) print 'rand_index = ' + str(rand_index) f.write("Rand Index = " + str(rand_index) + "\n") else: if len(clusters) == len(labels): f.write("\nResults\n") f.write('Clusters Obtained = ' + str(np.asarray(clusters))) f.write('Labels = ' + str(np.asarray(labels))) rand_index = metrics.adjusted_rand_score(labels, clusters) rand_indexes.append(rand_index) print 'rand_index = ' + str(rand_index) f.write("Rand Index = " + str(rand_index) + "\n") NMI_index = metrics.normalized_mutual_info_score( labels, clusters) nmi_indexes.append(NMI_index) print 'NMI_index = ' + str(NMI_index) f.write("NMI Index = " + str(NMI_index) + "\n") if rep > 1: f.write("\nFINAL RESULTS\n") f.write("Avg Rand Index = " + str(float(sum(rand_indexes)) / rep) + "\n") f.write("Std Rand Index = " + str(statistics.stdev(rand_indexes)) + "\n") f.write("Avg NMI Index = " + str(float(sum(nmi_indexes)) / rep) + "\n") f.write("Std NMI Index = " + str(statistics.stdev(nmi_indexes)) + "\n") f.close()