예제 #1
0
def test_delta(fname=None):

    n_dims = [max_tier] * max_terms
    heom = Hierachy(n_dims, H, V, corr)

    # Adopt MCTDH
    root = simple_heom(rho_0, n_dims)
    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = MultiLayer(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.atol = 1.e-7
    solver.rtol = 1.e-7

    # Define the obersevable of interest
    logger = Logger(filename=fname, level='info').logger
    for n, (time, r) in enumerate(
            solver.propagator(
                steps=count,
                ode_inter=dt_unit,
                #split=False,
            )):
        if n % callback_interval == 0:
            rho = np.reshape(r.array, (-1, 4))
            logger.info("{} {} {} {} {}".format(time, rho[0, 0], rho[0, 1],
                                                rho[0, 2], rho[0, 3]))

    return
예제 #2
0
def test_heom(fname=None):
    ph_dims = list(np.repeat(model.ph_dims, 2))
    n_dims = ph_dims if model.bath_dims is None else ph_dims + model.bath_dims
    print(n_dims)

    root = tensor_tree_template(rho_0, n_dims, rank=rank_heom)
    leaves = root.leaves()
    h_list = model.heom_h_list(leaves[0], leaves[1], leaves[2:], beta=beta)

    solver = MultiLayer(root, h_list)
    solver.ode_method = 'RK45'
    solver.cmf_steps = solver.max_ode_steps  # use constant mean-field
    solver.ps_method = 'split'
    #solver.svd_err = 1.0e-10

    # Define the obersevable of interest
    logger = Logger(filename=prefix + fname, level='info').logger
    logger2 = Logger(filename=prefix + "en_" + fname, level='info').logger
    for n, (time, r) in enumerate(
            solver.propagator(
                steps=count,
                ode_inter=dt_unit,
                split=True,
            )):
        # renormalized by the trace of rho
        norm = np.trace(np.reshape(np.reshape(r.array, (4, -1))[:, 0], (2, 2)))
        r.set_array(r.array / norm)
        if n % callback_interval == 0:
            t = Quantity(time).convert_to(unit='fs').value
            rho = np.reshape(r.array, (4, -1))[:, 0]
            logger.info("{}    {} {} {} {}".format(t, rho[0], rho[1], rho[2],
                                                   rho[3]))
            en = np.trace(np.reshape(rho, (2, 2)) @ model.h)
            logger2.info('{}    {}'.format(t, en))
    return
예제 #3
0
def test_simple(fname=None):
    # Type settings
    corr.print()

    n_dims = [max_tier] * max_terms
    heom = Hierachy(n_dims, H, V, corr)

    # Adopt MCTDH
    root = simple_heom(rho_0, n_dims)
    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    #solver = ProjectorSplitting(root, all_terms)
    solver = MultiLayer(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False

    # Define the obersevable of interest
    logger = Logger(filename=fname, level='info').logger
    for n, (time, r) in enumerate(solver.propagator(
            steps=count,
            ode_inter=dt_unit,
    )):
        try:
            if n % callback_interval == 0:
                rho = np.reshape(r.array, (-1, 4))[0]
                logger.info("{} {} {} {} {}".format(time, rho[0], rho[1], rho[2], rho[3]))
        except:
            break

    return
예제 #4
0
def test_train(fname=None):
    # Type settings
    corr = Correlation(k_max=max_terms)
    corr.symm_coeff = np.diag(corr_dict['s'].toarray())
    corr.asymm_coeff = np.diag(corr_dict['a'].toarray())
    corr.exp_coeff = np.diag(corr_dict['gamma'].toarray())
    corr.delta_coeff = 0.0  # delta_coeff
    corr.print()

    n_dims = [max_tier] * max_terms
    heom = Hierachy(n_dims, H, V, corr)

    # Adopt TT
    tensor_train = tensor_train_template(rho_0, n_dims)
    root = tensor_train[0]
    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = MultiLayer(root, all_terms)
    #solver = ProjectorSplitting(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.atol = 1.e-7
    solver.rtol = 1.e-7
    solver.ps_method = 'split-unite'

    projector = np.zeros((max_tier, 1))
    projector[0] = 1.0
    logger = Logger(filename=fname, level='info').logger
    for n, (time, _) in enumerate(
            solver.propagator(steps=count, ode_inter=dt_unit, split=False)):
        if n % callback_interval == 0:
            head = root.array
            for t in tensor_train[1:]:
                spf = Tensor.partial_product(t.array, 1, projector, 0)
                head = Tensor.partial_product(head, head.ndim - 1, spf, 0)

            rho = np.reshape(head, (4, -1))[:, 0]
            logger.info("{} {} {} {} {}".format(time, rho[0], rho[1], rho[2],
                                                rho[3]))
    return
예제 #5
0
def test_train(fname=None):
    # HEOM metas
    corr.print()

    n_dims = [max_tier] * max_terms
    heom = Hierachy(n_dims, H, V, corr)

    # 2-site TT
    tensor_train = tensor_train_template(rho_0, n_dims, rank=1)
    root = tensor_train[0]
    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = MultiLayer(root, all_terms)
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.svd_err = 1.e-8
    solver.svd_rank = max_tier
    solver.ps_method = 'unite'

    projector = np.zeros((max_tier, 1))
    projector[0] = 1.0
    logger = Logger(filename=fname, level='info').logger
    logger2 = Logger(filename=fname + '_norm', level='info').logger
    for n, (time, _) in enumerate(solver.propagator(steps=count, ode_inter=dt_unit, split=True)):
        #print('n = {}: '.format(n))
        #for t in tensor_train:
        #    print('{}: {}'.format(t, t.shape))
        if n % callback_interval == 0:
            head = root.array
            for t in tensor_train[1:]:
                spf = Tensor.partial_product(t.array, 1, projector, 0)
                head = Tensor.partial_product(head, head.ndim - 1, spf, 0)

            rho = np.reshape(head, (4, -1))[:, 0]
            logger2.warning("{} {}".format(time, rho[0] + rho[3]))
            logger.info("{} {} {} {} {}".format(time, rho[0], rho[1], rho[2], rho[3]))
    return
예제 #6
0
def test_drude(fname=None):
    # Type settings
    corr = Correlation(k_max=max_terms)
    corr.symm_coeff = np.diag(corr_dict['s'].toarray())
    corr.asymm_coeff = np.diag(corr_dict['a'].toarray())
    corr.exp_coeff = np.diag(corr_dict['gamma'].toarray())
    corr.delta_coeff = 0.0  # delta_coeff
    corr.print()

    n_dims = [max_tier] * max_terms
    heom = Hierachy(n_dims, H, V, corr)

    # Adopt MCTDH
    root = simple_heom(rho_0, n_dims)
    leaves_dict = {leaf.name: leaf for leaf in root.leaves()}
    all_terms = []
    for term in heom.diff():
        all_terms.append([(leaves_dict[str(fst)], snd) for fst, snd in term])

    solver = ProjectorSplitting(root, all_terms)
    solver.ode_method = 'DOP853'
    solver.snd_order = False
    solver.atol = 1.e-7
    solver.rtol = 1.e-7

    # Define the obersevable of interest
    logger = Logger(filename=fname, level='info').logger
    for n, (time, r) in enumerate(solver.propagator(
            steps=count,
            ode_inter=dt_unit,
    )):
        if n % callback_interval == 0:
            rho = np.reshape(r.array, (-1, 4))
            logger.info("{} {} {} {} {}".format(time, rho[0, 0], rho[0, 1], rho[0, 2], rho[0, 3]))
            print("Time: {};    Tr rho_0: {}".format(time, rho[0, 0] + rho[0, -1]))

    return
예제 #7
0
def test_mctdh(fname=None):
    sys_leaf = Leaf(name='sys0')

    ph_leaves = []
    for n, (omega, g) in enumerate(ph_parameters, 1):
        ph_leaf = Leaf(name='ph{}'.format(n))
        ph_leaves.append(ph_leaf)

    def ph_spf():
        t = Tensor(axis=0)
        t.name = 'spf' + str(hex(id(t)))[-4:]
        return t

    graph, root = huffman_tree(ph_leaves, obj_new=ph_spf, n_branch=2)
    try:
        graph[root].insert(0, sys_leaf)
    except KeyError:
        ph_leaf = root
        root = Tensor()
        graph[root] = [sys_leaf, ph_leaf]
    finally:
        root.name = 'wfn'
        root.axis = None

    stack = [root]
    while stack:
        parent = stack.pop()
        for child in graph[parent]:
            parent.link_to(parent.order, child, 0)
            if child in graph:
                stack.append(child)

    # Define the detailed parameters for the ML-MCTDH tree
    h_list = model.wfn_h_list(sys_leaf, ph_leaves)
    solver = MultiLayer(root, h_list)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if t.name.startswith('sys'):
            bond_dict[(s, i, t, j)] = 2
        else:
            if isinstance(t, Leaf):
                bond_dict[(s, i, t, j)] = max_tier
            else:
                bond_dict[(s, i, t, j)] = rank_wfn
    solver.autocomplete(bond_dict)
    # set initial root array
    init_proj = np.array([[A, 0.0], [B, 0.0]]) / np.sqrt(A**2 + B**2)
    root_array = Tensor.partial_product(root.array, 0, init_proj, 1)
    root.set_array(root_array)

    solver = MultiLayer(root, h_list)
    solver.ode_method = 'RK45'
    solver.cmf_steps = solver.max_ode_steps  # constant mean-field
    solver.ps_method = 'split'
    solver.svd_err = 1.0e-14

    # Define the obersevable of interest
    logger = Logger(filename=prefix + fname, level='info').logger
    logger2 = Logger(filename=prefix + 'en_' + fname, level='info').logger
    for n, (time, r) in enumerate(
            solver.propagator(
                steps=count,
                ode_inter=dt_unit,
                split=True,
            )):
        if n % callback_interval == 0:
            t = Quantity(time).convert_to(unit='fs').value
            rho = r.partial_env(0, proper=False)
            logger.info("{}    {} {} {} {}".format(t, rho[0, 0], rho[0, 1],
                                                   rho[1, 0], rho[1, 1]))
            en = np.trace(rho @ model.h)
            logger2.info('{}    {}'.format(t, en))
예제 #8
0
파일: sbm.py 프로젝트: vINyLogY/minimisTN
def ml(fname,
       e,
       v,
       primitive_dim,
       spf_dim,
       ph_parameters,
       steps=2000,
       ode_inter=0.1):
    logger = Logger(filename=fname).logger

    # define parameters
    sys_hamiltonian = np.array([[e, v], [v, -e]], dtype=DTYPE)
    projector = np.array([[1.0, 0.0], [0.0, -1.0]],
                         dtype=DTYPE)  # S in H_SB = S x B

    primitive_dim = primitive_dim
    spf_dim = spf_dim

    # Define all Leaf tensors and hamiltonian we need
    h_list = []
    sys_leaf = Leaf(name='sys0')
    h_list.append([(sys_leaf, -1.0j * sys_hamiltonian)])

    ph_parameters = ph_parameters

    leaves = []
    for n, (omega, g) in enumerate(ph_parameters, 1):
        ph = Phonon(primitive_dim, omega)
        ph_leaf = Leaf(name='ph{}'.format(n))
        leaves.append(ph_leaf)
        # hamiltonian ph part
        h_list.append([(ph_leaf, -1.0j * ph.hamiltonian)])
        # e-ph part
        op = ph.annihilation_operator + ph.creation_operator
        h_list.append([(ph_leaf, g * op), (sys_leaf, -1.0j * projector)])

    def ph_spf():
        t = Tensor(axis=0, normalized=True)
        t.name = str(hex(id(t)))[-4:]
        return t

    graph, root = huffman_tree(leaves, obj_new=ph_spf, n_branch=2)
    try:
        graph[root].insert(0, sys_leaf)
    except KeyError:
        ph_leaf = root
        root = Tensor()
        graph[root] = [sys_leaf, ph_leaf]
    finally:
        root.name = 'wfn'
        root.axis = None
        root.normalized = True
    stack = [root]
    while stack:
        parent = stack.pop()
        for child in graph[parent]:
            parent.link_to(parent.order, child, 0)
            if child in graph:
                stack.append(child)
    logger.info(f"graph:{graph}")

    # Define the detailed parameters for the ML-MCTDH tree
    solver = MultiLayer(root, h_list)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if t.name and t.name.startswith('sys'):
            bond_dict[(s, i, t, j)] = 2
        else:
            if isinstance(t, Leaf):
                bond_dict[(s, i, t, j)] = primitive_dim
            else:
                bond_dict[(s, i, t, j)] = spf_dim
    solver.autocomplete(bond_dict)
    logger.info(f"bond_dict:{bond_dict}")
    # set initial root array
    a, b = 1.0, 0
    init_proj = np.array([[a, 0.0], [b, 0.0]]) / np.sqrt(a**2 + b**2)
    root_array = Tensor.partial_product(root.array, 0, init_proj, 1)
    root.set_array(root_array)

    # Define the computation details
    solver.ode_method = 'RK45'
    solver.snd_order = False
    solver.cmf_steps = 100
    # Define the obersevable of interest
    logger.info('''# time    rho00  rho01  rho10  rho11''')
    for time, _ in solver.propagator(
            steps=steps,
            ode_inter=ode_inter,
            split=True,
    ):
        t = time
        for tensor in root.visitor(axis=None):
            tensor.reset()
            tensor.normalize(forced=True)
        rho = root.partial_env(0, proper=False)
        for tensor in root.visitor(axis=None):
            tensor.reset()
        flat_data = [t] + list(np.reshape(rho, -1))
        logger.info('{}    {}  {}  {}  {}'.format(*flat_data))
예제 #9
0
def ml(dof, e, v, eta, cutoff, scale=5, loc=None, steps=2000, ode_inter=0.1):
    f_ = 'dof{}-eta{}.log'.format(dof, eta)
    logger = Logger(filename=f_).logger

    # define parameters
    e = Quantity(e, 'cm-1').value_in_au
    v = Quantity(v, 'cm-1').value_in_au
    eta = Quantity(eta, 'cm-1').value_in_au
    omega0 = Quantity(cutoff, 'cm-1').value_in_au
    sys_hamiltonian = np.array([[-e / 2.0, v], [v, e / 2.0]], dtype=DTYPE)
    projector = np.array([[0.0, 0.0], [0.0, 1.0]],
                         dtype=DTYPE)  # S in H_SB = S x B

    primitive_dim = 100
    spf_dim = 20

    # Spectrum function
    def spec_func(omega):
        if 0 < omega < omega0:
            return eta
        else:
            return 0.0

    # Define all Leaf tensors and hamiltonian we need
    h_list = []
    sys_leaf = Leaf(name='sys0')
    h_list.append([(sys_leaf, -1.0j * sys_hamiltonian)])

    ph_parameters = linear_discretization(spec_func, omega0, dof)
    if loc is not None:
        adj_pair = (ph_parameters[loc][0], ph_parameters[loc][1] * scale)
        ph_parameters[loc] = adj_pair
    leaves = []
    for n, (omega, g) in enumerate(ph_parameters, 1):
        ph = Phonon(primitive_dim, omega)
        ph_leaf = Leaf(name='ph{}'.format(n))
        leaves.append(ph_leaf)
        # hamiltonian ph part
        h_list.append([(ph_leaf, -1.0j * ph.hamiltonian)])
        # e-ph part
        op = ph.annihilation_operator + ph.creation_operator
        h_list.append([(ph_leaf, g * op), (sys_leaf, -1.0j * projector)])

    def ph_spf(n=0):
        n += 1
        return Tensor(name='spf{}'.format(n), axis=0)

    graph, root = huffman_tree(leaves, obj_new=ph_spf, n_branch=2)
    try:
        graph[root].insert(0, sys_leaf)
    except KeyError:
        ph_leaf = root
        root = Tensor()
        graph[root] = [sys_leaf, ph_leaf]
    finally:
        root.name = 'wfn'
        root.axis = None

    print(graph)
    stack = [root]
    while stack:
        parent = stack.pop()
        for child in graph[parent]:
            parent.link_to(parent.order, child, 0)
            if child in graph:
                stack.append(child)

    # Define the detailed parameters for the ML-MCTDH tree
    solver = MultiLayer(root, h_list)
    bond_dict = {}
    # Leaves
    for s, i, t, j in root.linkage_visitor():
        if t.name.startswith('sys'):
            bond_dict[(s, i, t, j)] = 2
        else:
            if isinstance(t, Leaf):
                bond_dict[(s, i, t, j)] = primitive_dim
            else:
                bond_dict[(s, i, t, j)] = spf_dim
    solver.autocomplete(bond_dict)
    # set initial root array
    a, b = 1.0, 1.0
    init_proj = np.array([[a, 0.0], [b, 0.0]]) / np.sqrt(a**2 + b**2)
    root_array = Tensor.partial_product(root.array, 0, init_proj, 1)
    root.set_array(root_array)

    # Define the computation details
    solver.ode_method = 'RK45'
    solver.snd_order = True
    solver.cmf_steps = 1
    root.is_normalized = True
    # Define the obersevable of interest
    logger.info('''# time/fs    rho00  rho01  rho10  rho11''')
    for time, _ in solver.propagator(
            steps=steps,
            ode_inter=Quantity(ode_inter, 'fs').value_in_au,
            split=True,
    ):
        t = Quantity(time).convert_to(unit='fs').value
        for tensor in root.visitor(axis=None):
            tensor.reset()
        rho = root.partial_env(0, proper=False)
        for tensor in root.visitor(axis=None):
            tensor.reset()
        flat_data = [t] + list(np.reshape(rho, -1))
        logger.info('{}    {}  {}  {}  {}'.format(*flat_data))