예제 #1
0
 def test_mutate_layout(self):
     layout = Layout(
         input_size=100,
         output_size=10,
         output_activation='softmax')
     training = Training(
         objective=None,
         optimizer=None,
         metric=None,
         stopping=None,
         batch_size=None)
     experiment = Experiment(
         'test',
         layout,
         training,
         batch_iterator=None,
         test_batch_iterator=None,
         environment=None,
         parameters=ExperimentParameters(use_default_values=False))
     experiment.parameters.all_search_parameters(True)
     check_experiment_parameters(experiment)
     for _ in range(10):
         blueprint = create_random_blueprint(experiment)
         mutant = mutate_blueprint(
             blueprint,
             parameters=experiment.parameters,
             p_mutate_layout=1,
             layout_mutation_count=1,
             layout_mutables=['rows'],
             mutate_in_place=False)
         self.assertTrue(
             len(mutant.layout.rows) != len(blueprint.layout.rows),
             'Should have mutated rows')
         mutant = mutate_blueprint(
             blueprint,
             parameters=experiment.parameters,
             p_mutate_layout=1,
             layout_mutation_count=1,
             layout_mutables=['blocks'],
             mutate_in_place=False)
         self.assertTrue(
             len(mutant.layout.get_blocks()) != len(blueprint.layout.get_blocks()),
             'Should have mutated blocks')
         mutant = mutate_blueprint(
             blueprint,
             parameters=experiment.parameters,
             p_mutate_layout=1,
             layout_mutation_count=1,
             layout_mutables=['layers'],
             mutate_in_place=False)
         self.assertTrue(
             len(mutant.layout.get_layers()) != len(blueprint.layout.get_layers()),
             'Should have mutated layers')
예제 #2
0
 def test_predefined_multiple_blocklayout(self):
     layout = Layout(
         input_size=100,
         output_size=10,
         output_activation='softmax',
         block=[
             [('Dense', {'activation': 'relu'})],
             [('Dense', {'activation': 'relu'}),
                 'Dropout',
                 ('Dense', {'output_dim': 100})]])
     training = Training(
         objective=None,
         optimizer=Optimizer(),
         metric=None,
         stopping=None,
         batch_size=None)
     experiment = Experiment(
         'test',
         layout,
         training,
         batch_iterator=None,
         test_batch_iterator=None,
         environment=None,
         parameters=ExperimentParameters(use_default_values=False))
     experiment.parameters.search_parameter('layout', False)
     experiment.parameters.search_parameter('parameters', True)
     experiment.parameters.search_parameter('optimizer', True)
     for _ in range(10):
         blueprint1 = create_random_blueprint(experiment)
         blueprint2 = create_random_blueprint(experiment)
         blueprint3 = mix_blueprints(blueprint1, blueprint2, experiment.parameters)
         blueprint4 = mutate_blueprint(blueprint1, experiment.parameters, mutate_in_place=False)
         for idx, blueprint in enumerate([blueprint1, blueprint2, blueprint3, blueprint4]):
             self.assertIsNotNone(blueprint, 'Should have created a blueprint')
             self.assertIsNotNone(blueprint.layout, 'Should have created a layout')
             self.assertEqual(
                 1,
                 len(blueprint.layout.get_rows()),
                 'Should have 1 row')
             self.assertEqual(
                 1,
                 len(blueprint.layout.get_blocks()),
                 'Should have 1 block')
             for i, row in enumerate(blueprint.layout.get_rows()):
                 blocks = len(row.get_blocks())
                 self.assertTrue(
                     is_valid_param_value(
                         experiment.parameters.get_layout_parameter('blocks'),
                         blocks),
                     'Invalid value')
                 for block in row.get_blocks():
                     self.assertTrue(
                         len(block.layers) == len(layout.block[0])
                         or len(block.layers) == len(layout.block[1]),
                         'Should have used template')
예제 #3
0
    def test_mutate_w_custom_definitions(self):

        def custom_activation(x):
            return x

        register_custom_activation('custom_activation', custom_activation)
        register_custom_layer('Dense2', Dense, deepcopy(reference_parameters['layers']['Dense']))

        layout = Layout(
            input_size=100,
            output_size=10,
            output_activation='softmax',
            block=['Dense', 'Dense2'])
        training = Training(
            objective=Objective('categorical_crossentropy'),
            optimizer=None,
            metric=Metric('categorical_accuracy'),
            stopping=EpochStoppingCondition(5),
            batch_size=250)

        experiment_parameters = ExperimentParameters(use_default_values=False)
        experiment_parameters.layout_parameter('blocks', int_param(1, 5))
        experiment_parameters.layout_parameter('layers', int_param(1, 5))
        experiment_parameters.layer_parameter('Dense2.output_dim', int_param(10, 500))
        experiment_parameters.layer_parameter('Dropout.p', float_param(0.1, 0.9))
        experiment_parameters.all_search_parameters(True)
        experiment = Experiment(
            'test',
            layout,
            training,
            batch_iterator=None,
            test_batch_iterator=None,
            environment=None,
            parameters=experiment_parameters)
        check_experiment_parameters(experiment)
        for _ in range(10):
            blueprint = create_random_blueprint(experiment)
            mutant = mutate_blueprint(
                blueprint,
                parameters=experiment.parameters,
                p_mutate_layout=0,
                p_mutate_param=1,
                mutate_in_place=False)
            for row_idx, row in enumerate(mutant.layout.rows):
                for block_idx, block in enumerate(row.blocks):
                    for layer_idx, layer in enumerate(block.layers):
                        original_row = blueprint.layout.rows[row_idx]
                        original_block = original_row.blocks[block_idx]
                        original_layer = original_block.layers[layer_idx]
                        for name, value in layer.parameters.items():
                            self.assertTrue(
                                value != original_layer.parameters[name],
                                'Should have mutated parameter')
예제 #4
0
파일: build_test.py 프로젝트: wn9081/minos
    def test_build(self):
        layout = Layout(input_size=100,
                        output_size=10,
                        output_activation='softmax')
        training = Training(objective=Objective('categorical_crossentropy'),
                            optimizer=None,
                            metric=Metric('categorical_accuracy'),
                            stopping=EpochStoppingCondition(10),
                            batch_size=250)

        experiment_parameters = ExperimentParameters(use_default_values=False)
        experiment_parameters.layout_parameter('blocks', int_param(1, 5))
        experiment_parameters.layout_parameter('layers', int_param(1, 5))
        experiment_parameters.layer_parameter('Dense.output_dim',
                                              int_param(10, 500))
        experiment_parameters.layer_parameter('Dense.activation',
                                              string_param(['relu', 'tanh']))
        experiment_parameters.layer_parameter('Dropout.p',
                                              float_param(0.1, 0.9))
        experiment_parameters.all_search_parameters(True)
        experiment = Experiment('test',
                                layout,
                                training,
                                batch_iterator=None,
                                test_batch_iterator=None,
                                environment=None,
                                parameters=experiment_parameters)
        check_experiment_parameters(experiment)
        for _ in range(5):
            blueprint1 = create_random_blueprint(experiment)
            model = ModelBuilder().build(blueprint1, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
            blueprint2 = create_random_blueprint(experiment)
            model = ModelBuilder().build(blueprint2, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
            blueprint3 = mix_blueprints(blueprint1, blueprint2,
                                        experiment_parameters)
            model = ModelBuilder().build(blueprint3, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
            blueprint4 = mutate_blueprint(blueprint1,
                                          experiment_parameters,
                                          mutate_in_place=False)
            model = ModelBuilder().build(blueprint4, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
예제 #5
0
    def test_mutate_parameters(self):
        layout = Layout(
            input_size=100,
            output_size=10,
            output_activation='softmax')
        training = Training(
            objective=None,
            optimizer=None,
            metric=None,
            stopping=None,
            batch_size=None)
        experiment = Experiment(
            'test',
            layout,
            training,
            batch_iterator=None,
            test_batch_iterator=None,
            environment=None,
            parameters=ExperimentParameters(use_default_values=False))
        experiment.parameters.all_search_parameters(True)
        for _ in range(10):
            blueprint = create_random_blueprint(experiment)
            mutant = mutate_blueprint(
                blueprint,
                parameters=experiment.parameters,
                p_mutate_layout=0,
                p_mutate_param=1,
                mutate_in_place=False)

            for row_idx, row in enumerate(mutant.layout.rows):
                for block_idx, block in enumerate(row.blocks):
                    for layer_idx, layer in enumerate(block.layers):
                        original_row = blueprint.layout.rows[row_idx]
                        original_block = original_row.blocks[block_idx]
                        original_layer = original_block.layers[layer_idx]
                        for name, value in layer.parameters.items():
                            if value == original_layer.parameters[name]:
                                pass
                            self.assertTrue(
                                value != original_layer.parameters[name],
                                'Should have mutated parameter')
예제 #6
0
파일: build_test.py 프로젝트: wn9081/minos
    def test_build_w_custom_definitions(self):
        def custom_activation(x):
            return x

        register_custom_activation('custom_activation', custom_activation)
        register_custom_layer(
            'Dense2', Dense, deepcopy(reference_parameters['layers']['Dense']),
            True)

        layout = Layout(input_size=100,
                        output_size=10,
                        output_activation='softmax',
                        block=['Dense2'])
        training = Training(objective=Objective('categorical_crossentropy'),
                            optimizer=None,
                            metric=Metric('categorical_accuracy'),
                            stopping=EpochStoppingCondition(5),
                            batch_size=250)

        experiment_parameters = ExperimentParameters(use_default_values=False)
        experiment_parameters.layout_parameter('blocks', int_param(1, 5))
        experiment_parameters.layout_parameter('layers', int_param(1, 5))
        experiment_parameters.layout_parameter('layer.type',
                                               string_param(['Dense2']))
        experiment_parameters.layer_parameter('Dense2.output_dim',
                                              int_param(10, 500))
        experiment_parameters.layer_parameter(
            'Dense2.activation', string_param(['custom_activation']))
        experiment_parameters.layer_parameter('Dropout.p',
                                              float_param(0.1, 0.9))
        experiment_parameters.all_search_parameters(True)
        experiment = Experiment('test',
                                layout,
                                training,
                                batch_iterator=None,
                                test_batch_iterator=None,
                                environment=None,
                                parameters=experiment_parameters)
        check_experiment_parameters(experiment)
        for _ in range(5):
            blueprint1 = create_random_blueprint(experiment)
            for layer in blueprint1.layout.get_layers():
                self.assertEqual('Dense2', layer.layer_type,
                                 'Should have used custom layer')
            model = ModelBuilder().build(blueprint1, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
            blueprint2 = create_random_blueprint(experiment)
            for layer in blueprint2.layout.get_layers():
                self.assertEqual('Dense2', layer.layer_type,
                                 'Should have used custom layer')
            model = ModelBuilder().build(blueprint2, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
            blueprint3 = mix_blueprints(blueprint1, blueprint2,
                                        experiment_parameters)
            for layer in blueprint3.layout.get_layers():
                self.assertEqual('Dense2', layer.layer_type,
                                 'Should have used custom layer')
            model = ModelBuilder().build(blueprint3, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
            blueprint4 = mutate_blueprint(blueprint1,
                                          experiment_parameters,
                                          mutate_in_place=False)
            for layer in blueprint4.layout.get_layers():
                self.assertEqual('Dense2', layer.layer_type,
                                 'Should have used custom layer')
            model = ModelBuilder().build(blueprint4, cpu_device())
            self.assertIsNotNone(model, 'Should have built a model')
예제 #7
0
 def test_predefined_layout(self):
     layout = Layout(
         input_size=100,
         output_size=10,
         output_activation='softmax',
         block=[
             ('Dense', {'activation': 'relu'}),
             'Dropout',
             ('Dense', {'output_dim': 100})])
     training = Training(
         objective=None,
         optimizer=Optimizer(),
         metric=None,
         stopping=None,
         batch_size=None)
     experiment = Experiment(
         'test',
         layout,
         training,
         batch_iterator=None,
         test_batch_iterator=None,
         environment=None,
         parameters=ExperimentParameters(use_default_values=False))
     experiment.parameters.search_parameter('layout', False)
     experiment.parameters.search_parameter('parameters', True)
     experiment.parameters.search_parameter('optimizer', True)
     for _ in range(10):
         blueprint1 = create_random_blueprint(experiment)
         blueprint2 = create_random_blueprint(experiment)
         blueprint3 = mix_blueprints(blueprint1, blueprint2, experiment.parameters)
         blueprint4 = mutate_blueprint(blueprint1, experiment.parameters, mutate_in_place=False)
         for idx, blueprint in enumerate([blueprint1, blueprint2, blueprint3, blueprint4]):
             self.assertIsNotNone(blueprint, 'Should have created a blueprint')
             self.assertIsNotNone(blueprint.layout, 'Should have created a layout')
             self.assertEqual(
                 1,
                 len(blueprint.layout.get_rows()),
                 'Should have 1 row')
             self.assertEqual(
                 1,
                 len(blueprint.layout.get_blocks()),
                 'Should have 1 block')
             self.assertEqual(
                 len(layout.block),
                 len(blueprint.layout.get_layers()),
                 'Should have predefined layers count')
             for i, row in enumerate(blueprint.layout.get_rows()):
                 blocks = len(row.get_blocks())
                 self.assertTrue(
                     is_valid_param_value(
                         experiment.parameters.get_layout_parameter('blocks'),
                         blocks),
                     'Invalid value')
                 for block in row.get_blocks():
                     self.assertEqual(
                         len(layout.block),
                         len(block.layers),
                         'Should have used template')
                     for i in range(len(layout.block)):
                         layer = layout.block[i]
                         layer_type = str_param_name(layer[0] if isinstance(layer, tuple) else layer)
                         params = layer[1] if isinstance(layer, tuple) else dict()
                         self.assertEqual(
                             layer_type,
                             block.layers[i].layer_type,
                             'Should have used the predefined layer type')
                         for name, value in params.items():
                             self.assertEqual(
                                 value,
                                 block.layers[i].parameters[name],
                                 'Should have used the predefined parameter value for blueprint %d' % idx)
예제 #8
0
파일: ga.py 프로젝트: wn9081/minos
 def mutate_individual(self, individual, mutate_in_place=False):
     return GaBlueprint(
         individual=mutate_blueprint(
             individual,
             self.parameters,
             mutate_in_place=mutate_in_place))