예제 #1
0
파일: resample.py 프로젝트: hfattahi/PySAR
        def mark_lalo_anomoly(lat, lon):
            """mask pixels with abnormal values (0, etc.)
            This is found on sentinelStack multiple swath lookup table file.
            """
            # ignore pixels with zero value
            zero_mask = np.multiply(lat != 0., lon != 0.)

            # ignore anomaly non-zero values 
            # by get the most common data range (d_min, d_max) based on histogram
            mask = np.array(zero_mask, np.bool_)
            for data in [lat, lon]:
                bin_value, bin_edge = np.histogram(data[mask], bins=10)                
                # if there is anomaly, histogram won't be evenly distributed
                while np.max(bin_value) > np.sum(zero_mask) * 0.3:
                    # find the continous bins where the largest bin is --> normal data range
                    bin_value_thres = ut.median_abs_deviation_threshold(bin_value, cutoff=3)
                    bin_label = ndimage.label(bin_value > bin_value_thres)[0]
                    idx = np.where(bin_label == bin_label[np.argmax(bin_value)])[0]
                    # convert to min/max data value
                    bin_step = bin_edge[1] - bin_edge[0]
                    d_min = bin_edge[idx[0]] - bin_step / 2.
                    d_max = bin_edge[idx[-1]+1] + bin_step / 2.
                    mask *= np.multiply(data >= d_min, data <= d_max)
                    bin_value, bin_edge = np.histogram(data[mask], bins=10)
            lat[mask == 0] = 90.
            lon[mask == 0] = 0.
            return lat, lon, mask
예제 #2
0
        def mark_lat_lon_anomoly(lat, lon):
            """mask pixels with abnormal values (0, etc.)
            This is found on sentinelStack multiple swath lookup table file.
            """
            # ignore pixels with zero value
            zero_mask = np.multiply(lat != 0., lon != 0.)

            # ignore anomaly non-zero values
            # by get the most common data range (d_min, d_max) based on histogram
            mask = np.array(zero_mask, np.bool_)
            for data in [lat, lon]:
                bin_value, bin_edge = np.histogram(data[mask], bins=10)
                # if there is anomaly, histogram won't be evenly distributed
                while np.max(bin_value) > np.sum(zero_mask) * 0.3:
                    # find the continous bins where the largest bin is --> normal data range
                    bin_value_thres = ut.median_abs_deviation_threshold(
                        bin_value, cutoff=3)
                    bin_label = ndimage.label(bin_value > bin_value_thres)[0]
                    idx = np.where(
                        bin_label == bin_label[np.argmax(bin_value)])[0]
                    # convert to min/max data value
                    bin_step = bin_edge[1] - bin_edge[0]
                    d_min = bin_edge[idx[0]] - bin_step / 2.
                    d_max = bin_edge[idx[-1] + 1] + bin_step / 2.
                    mask *= np.multiply(data >= d_min, data <= d_max)
                    bin_value, bin_edge = np.histogram(data[mask], bins=10)

            # set invalid pixels to fixed values
            lat[mask == 0] = 90.
            lon[mask == 0] = 0.
            return lat, lon, mask