def train(train_loader, model, criterion, optimizer, epoch, opt): """ train for one epoch on the training set """ batch_time = utils.AverageMeter() losses = utils.AverageMeter() top1 = utils.AverageMeter() # training mode model.train() end = time.time() for i, (input_points, labels) in enumerate(train_loader): # bz x 2048 x 3 input_points = Variable(input_points) input_points = input_points.transpose(2, 1) labels = Variable(labels[:, 0]) # print(points.size()) # print(labels.size()) # shift data to GPU if opt.cuda: input_points = input_points.cuda() labels = labels.long().cuda() # must be long cuda tensor # forward, backward optimize output, _ = model(input_points) # debug_here() loss = criterion(output, labels) ############################## # measure accuracy ############################## prec1 = utils.accuracy(output.data, labels.data, topk=(1,))[0] losses.update(loss.data[0], input_points.size(0)) top1.update(prec1[0], input_points.size(0)) ############################## # compute gradient and do sgd ############################## optimizer.zero_grad() loss.backward() ############################## # gradient clip stuff ############################## utils.clip_gradient(optimizer, opt.gradient_clip) optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % opt.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, loss=losses, top1=top1))
def train(train_loader, model, criterion, optimizer, epoch, opt): """ train for one epoch on the training set """ # training mode model.train() for i, (input_points, _labels, segs) in enumerate(train_loader): # bz x 2048 x 3 input_points = Variable(input_points) input_points = input_points.transpose(2, 1) ############### ## ############### _labels = _labels.long() segs = segs.long() labels_onehot = utils.labels_batch2one_hot_batch(_labels, opt.num_classes) labels_onehot = Variable(labels_onehot) # we dnonot calculate the gradients here # labels_onehot.requires_grad = True segs = Variable(segs) if opt.cuda: input_points = input_points.cuda() segs = segs.cuda() # must be long cuda tensor labels_onehot = labels_onehot.float().cuda() # this will be feed into the network optimizer.zero_grad() # forward, backward optimize # pred, _ = model(input_points, labels_onehot) pred, _, _ = model(input_points, labels_onehot) pred = pred.view(-1, opt.num_seg_classes) segs = segs.view(-1, 1)[:, 0] # debug_here() loss = criterion(pred, segs) loss.backward() ############################## # gradient clip stuff ############################## utils.clip_gradient(optimizer, opt.gradient_clip) optimizer.step() pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(segs.data).cpu().sum() if i % opt.print_freq == 0: print('[%d: %d] train loss: %f accuracy: %f' %(i, len(train_loader), loss.data[0], correct/float(opt.batch_size * opt.num_points)))
def train(opt): loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length infos = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = infos.get('val_result_history', {}) loss_history = infos.get('loss_history', {}) lr_history = infos.get('lr_history', {}) ss_prob_history = infos.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) cnn_model = utils.build_cnn(opt) cnn_model.cuda() model = models.setup(opt) model.cuda() update_lr_flag = True # Assure in training mode model.train() crit = utils.LanguageModelCriterion() optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate) cnn_optimizer = optim.Adam(cnn_model.parameters(), lr=opt.cnn_learning_rate, weight_decay=opt.cnn_weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None: if os.path.isfile(os.path.join(opt.start_from, 'optimizer.pth')): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) if os.path.isfile(os.path.join(opt.start_from, 'optimizer-cnn.pth')): cnn_optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer-cnn.pth'))) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # Update the training stage of cnn if opt.finetune_cnn_after == -1 or epoch < opt.finetune_cnn_after: for p in cnn_model.parameters(): p.requires_grad = False cnn_model.eval() else: for p in cnn_model.parameters(): p.requires_grad = True cnn_model.train() update_lr_flag = False torch.cuda.synchronize() start = time.time() # Load data from train split (0) data = loader.get_batch('train') torch.cuda.synchronize() print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [data['images'], data['labels'], data['masks']] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] images, labels, masks = tmp att_feats = cnn_model(images) fc_feats = att_feats.mean(2).mean(3).squeeze(2).squeeze(2) att_feats = att_feats.unsqueeze(1).expand(*(( att_feats.size(0), opt.seq_per_img, ) + att_feats.size()[1:])).contiguous().view( *((att_feats.size(0) * opt.seq_per_img, ) + att_feats.size()[1:])) fc_feats = fc_feats.unsqueeze(1).expand(*(( fc_feats.size(0), opt.seq_per_img, ) + fc_feats.size()[1:])).contiguous().view( *((fc_feats.size(0) * opt.seq_per_img, ) + fc_feats.size()[1:])) optimizer.zero_grad() if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: cnn_optimizer.zero_grad() loss = crit(model(fc_feats, att_feats, labels), labels[:, 1:], masks[:, 1:]) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: utils.clip_gradient(cnn_optimizer, opt.grad_clip) cnn_optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): loss_history[iteration] = train_loss lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( cnn_model, model, crit, loader, eval_kwargs) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') cnn_checkpoint_path = os.path.join(opt.checkpoint_path, 'model-cnn.pth') torch.save(model.state_dict(), checkpoint_path) torch.save(cnn_model.state_dict(), cnn_checkpoint_path) print("model saved to {}".format(checkpoint_path)) print("cnn model saved to {}".format(cnn_checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') cnn_optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer-cnn.pth') torch.save(optimizer.state_dict(), optimizer_path) torch.save(cnn_optimizer.state_dict(), cnn_optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['best_val_score'] = best_val_score infos['opt'] = opt infos['val_result_history'] = val_result_history infos['loss_history'] = loss_history infos['lr_history'] = lr_history infos['ss_prob_history'] = ss_prob_history infos['vocab'] = loader.get_vocab() with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') cnn_checkpoint_path = os.path.join(opt.checkpoint_path, 'model-cnn-best.pth') torch.save(model.state_dict(), checkpoint_path) torch.save(cnn_model.state_dict(), cnn_checkpoint_path) print("model saved to {}".format(checkpoint_path)) print("cnn model saved to {}".format(cnn_checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(epoch, opt): model.train() ######################################################################################### # Training begins here ######################################################################################### data_iter = iter(dataloader) lm_loss_temp = 0 bn_loss_temp = 0 fg_loss_temp = 0 cider_temp = 0 rl_loss_temp = 0 start = time.time() #mycount = 0 #mybatch = 5 #loss = 0 for step in range(len(dataloader)-1): data = data_iter.next() img, iseq, gts_seq, num, proposals, bboxs, box_mask, img_id = data proposals = proposals[:,:max(int(max(num[:,1])),1),:] bboxs = bboxs[:,:int(max(num[:,2])),:] box_mask = box_mask[:,:,:max(int(max(num[:,2])),1),:] input_imgs.data.resize_(img.size()).copy_(img) input_seqs.data.resize_(iseq.size()).copy_(iseq) gt_seqs.data.resize_(gts_seq.size()).copy_(gts_seq) input_num.data.resize_(num.size()).copy_(num) input_ppls.data.resize_(proposals.size()).copy_(proposals) gt_bboxs.data.resize_(bboxs.size()).copy_(bboxs) mask_bboxs.data.resize_(box_mask.size()).copy_(box_mask) loss = 0 #model.init_hidden() #if mycount == 0: #model.zero_grad() #mycount = mybatch #If using RL for self critical sequence training if opt.self_critical: rl_loss, bn_loss, fg_loss, cider_score = model(input_imgs, input_seqs, gt_seqs, input_num, input_ppls, gt_bboxs, mask_bboxs, 'RL') cider_temp += cider_score.sum().data[0] / cider_score.numel() loss += (rl_loss.sum() + bn_loss.sum() + fg_loss.sum()) / rl_loss.numel() rl_loss_temp += loss.data[0] #If using MLE else: lm_loss, bn_loss, fg_loss = model(input_imgs, input_seqs, gt_seqs, input_num, input_ppls, gt_bboxs, mask_bboxs, 'MLE') loss += ((lm_loss.sum() + bn_loss.sum() + fg_loss.sum()) / lm_loss.numel()) lm_loss_temp += (lm_loss.sum().data.item() / lm_loss.numel()) bn_loss_temp += (bn_loss.sum().data.item() / lm_loss.numel()) fg_loss_temp += (fg_loss.sum().data.item() / lm_loss.numel()) model.zero_grad() loss.backward() nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) #utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if opt.finetune_cnn: utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if step % opt.disp_interval == 0 and step != 0: end = time.time() lm_loss_temp /= opt.disp_interval bn_loss_temp /= opt.disp_interval fg_loss_temp /= opt.disp_interval rl_loss_temp /= opt.disp_interval cider_temp /= opt.disp_interval print("step {}/{} (epoch {}), lm_loss = {:.3f}, bn_loss = {:.3f}, fg_loss = {:.3f}, rl_loss = {:.3f}, cider_score = {:.3f}, lr = {:.5f}, time/batch = {:.3f}" \ .format(step, len(dataloader), epoch, lm_loss_temp, bn_loss_temp, fg_loss_temp, rl_loss_temp, cider_temp, opt.learning_rate, end - start)) start = time.time() lm_loss_temp = 0 bn_loss_temp = 0 fg_loss_temp = 0 cider_temp = 0 rl_loss_temp = 0 # Write the training loss summary #if opt.self_critical: # if (iteration % opt.losses_log_every == 0): # if tf is not None: # add_summary_value(tf_summary_writer, 'train_loss', loss, iteration) # add_summary_value(tf_summary_writer, 'learning_rate', opt.learning_rate, iteration) # # add_summary_value(tf_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) # if opt.self_critical: # add_summary_value(tf_summary_writer, 'cider_score', cider_score.data.item(), iteration) # # tf_summary_writer.flush() loss_history[iteration] = loss.data.item() lr_history[iteration] = opt.learning_rate
def train(opt): # Deal with feature things before anything opt.use_fc, opt.use_att = utils.if_use_feat(opt.caption_model) if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5 loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl'), 'rb') as f: infos = utils.pickle_load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl'), 'rb') as f: histories = utils.pickle_load(f) else: infos['iter'] = 0 infos['epoch'] = 0 infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['vocab'] = loader.get_vocab() infos['opt'] = opt iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) # cnn_model = utils.build_cnn(opt) cnn_model = create_extractor( "/root/PycharmProjects/vgg_vae_best_model.pth") cnn_model = cnn_model.cuda() if vars(opt).get('start_from', None) is not None: cnn_model.load_state_dict( torch.load(os.path.join(opt.start_from, 'model-cnn.pth'))) print("load cnn model parameters from {}".format( os.path.join(opt.start_from, 'model-cnn.pth'))) model = models.setup(opt).cuda() dp_model = torch.nn.DataParallel(model) lw_model = LossWrapper(model, opt) dp_lw_model = torch.nn.DataParallel(lw_model) # dp_lw_model = lw_model epoch_done = True # Assure in training mode dp_lw_model.train() if opt.noamopt: assert opt.caption_model == 'transformer', 'noamopt can only work with transformer' optimizer = utils.get_std_opt(model, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup) optimizer._step = iteration elif opt.reduce_on_plateau: optimizer = utils.build_optimizer(model.parameters(), opt) optimizer = utils.ReduceLROnPlateau(optimizer, factor=0.5, patience=3) else: optimizer = utils.build_optimizer(model.parameters(), opt) # if opt.finetune_cnn_after != -1: # # only finetune the layer2 to layer4 cnn_optimizer = optim.Adam([{ 'params': module.parameters() } for module in cnn_model.finetune_modules], lr=opt.cnn_learning_rate, weight_decay=opt.cnn_weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None: if os.path.isfile(os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) if opt.finetune_cnn_after != -1: if os.path.isfile(os.path.join(opt.start_from, 'optimizer-cnn.pth')): cnn_optimizer.load_state_dict( torch.load( os.path.join(opt.start_from, 'optimizer-cnn.pth'))) def save_checkpoint(model, cnn_model, infos, optimizer, cnn_optimizer, histories=None, append=''): if len(append) > 0: append = '-' + append # if checkpoint_path doesn't exist if not os.path.isdir(opt.checkpoint_path): os.makedirs(opt.checkpoint_path) checkpoint_path = os.path.join(opt.checkpoint_path, 'model%s.pth' % (append)) torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) cnn_checkpoint_path = os.path.join(opt.checkpoint_path, 'model-cnn%s.pth' % (append)) torch.save(cnn_model.state_dict(), cnn_checkpoint_path) print("cnn model saved to {}".format(cnn_checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer%s.pth' % (append)) torch.save(optimizer.state_dict(), optimizer_path) if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: cnn_optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer%s-cnn.pth' % (append)) torch.save(cnn_optimizer.state_dict(), cnn_optimizer_path) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '%s.pkl' % (append)), 'wb') as f: utils.pickle_dump(infos, f) if histories: with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '%s.pkl' % (append)), 'wb') as f: utils.pickle_dump(histories, f) try: while True: if epoch_done: if not opt.noamopt and not opt.reduce_on_plateau: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate # set the decayed rate utils.set_lr(optimizer, opt.current_lr) # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min( opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # Update the training stage of cnn if opt.finetune_cnn_after == -1 or epoch < opt.finetune_cnn_after: for p in cnn_model.parameters(): p.requires_grad = False cnn_model.eval() else: for p in cnn_model.parameters(): p.requires_grad = True # Fix the first few layers: for module in cnn_model.fixed_modules: for p in module.parameters(): p.requires_grad = False cnn_model.train() # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False epoch_done = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') torch.cuda.synchronize() print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] tmp = [_ if _ is None else _.cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp # att_feats 8x672x224 att_feats = att_feats.view(att_feats.size(0), 3, 224, 224) att_feats, fc_feats = cnn_model(att_feats) # fc_feats = att_feats.mean(3).mean(2) # att_feats = torch.nn.functional.adaptive_avg_pool2d( # att_feats, [7, 7]).permute(0, 2, 3, 1) att_feats = att_feats.permute(0, 2, 3, 1) att_feats = att_feats.view(att_feats.size(0), 49, -1) att_feats = att_feats.unsqueeze(1).expand(*(( att_feats.size(0), opt.seq_per_img, ) + att_feats.size()[1:])).contiguous().view( (att_feats.size(0) * opt.seq_per_img), -1, att_feats.size()[-1]) fc_feats = fc_feats.unsqueeze(1).expand(*(( fc_feats.size(0), opt.seq_per_img, ) + fc_feats.size()[1:])).contiguous().view( *((fc_feats.size(0) * opt.seq_per_img, ) + fc_feats.size()[1:])) optimizer.zero_grad() if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: cnn_optimizer.zero_grad() model_out = dp_lw_model(fc_feats, att_feats, labels, masks, att_masks, data['gts'], torch.arange(0, len(data['gts'])), sc_flag) loss = model_out['loss'].mean() loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: utils.clip_gradient(cnn_optimizer, opt.grad_clip) cnn_optimizer.step() train_loss = loss.item() torch.cuda.synchronize() end = time.time() if not sc_flag: print( "iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" .format(iteration, epoch, train_loss, end - start)) else: print( "iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" .format(iteration, epoch, model_out['reward'].mean(), end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 epoch_done = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) if opt.noamopt: opt.current_lr = optimizer.rate() elif opt.reduce_on_plateau: opt.current_lr = optimizer.current_lr add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', model_out['reward'].mean(), iteration) loss_history[ iteration] = train_loss if not sc_flag else model_out[ 'reward'].mean() lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # update infos infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( cnn_model, model, lw_model.crit, loader, eval_kwargs) if opt.reduce_on_plateau: if 'CIDEr' in lang_stats: optimizer.scheduler_step(-lang_stats['CIDEr']) else: optimizer.scheduler_step(val_loss) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True # Dump miscalleous informations infos['best_val_score'] = best_val_score histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history save_checkpoint(model, cnn_model, infos, optimizer, cnn_optimizer, histories) if opt.save_history_ckpt: save_checkpoint(model, cnn_model, infos, optimizer, cnn_optimizer, append=str(iteration)) if best_flag: save_checkpoint(model, cnn_model, infos, optimizer, cnn_optimizer, append='best') # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break except (RuntimeError, KeyboardInterrupt): print('Save ckpt on exception ...') save_checkpoint(model, cnn_model, infos, optimizer, cnn_optimizer) print('Save ckpt done.') stack_trace = traceback.format_exc() print(stack_trace) # test model test_kwargs = {'split': 'test', 'dataset': opt.input_json} test_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( cnn_model, model, lw_model.crit, loader, test_kwargs) if opt.reduce_on_plateau: if 'CIDEr' in lang_stats: optimizer.scheduler_step(-lang_stats['CIDEr']) else: optimizer.scheduler_step(val_loss) # Write validation result into summary add_summary_value(tb_summary_writer, 'test loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions }
def train(opt): # Load data loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length # Tensorboard summaries (they're great!) tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) # Load pretrained model, info file, histories file infos = {} histories = {} if opt.start_from is not None: with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = ["rnn_type", "rnn_size", "num_layers"] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) # Create model model = models.setup(opt).cuda() dp_model = torch.nn.DataParallel(model) dp_model.train() # Loss function crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() # Optimizer and learning rate adjustment flag optimizer = utils.build_optimizer(model.parameters(), opt) update_lr_flag = True # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) # Training loop while True: # Update learning rate once per epoch if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False update_lr_flag = False # Load data from train split (0) start = time.time() data = loader.get_batch('train') data_time = time.time() - start start = time.time() # Unpack data torch.cuda.synchronize() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp # Forward pass and loss optimizer.zero_grad() if not sc_flag: loss = crit(dp_model(fc_feats, att_feats, labels, att_masks), labels[:, 1:], masks[:, 1:]) else: gen_result, sample_logprobs = dp_model(fc_feats, att_feats, att_masks, opt={'sample_max': 0}, mode='sample') reward = get_self_critical_reward(dp_model, fc_feats, att_feats, att_masks, data, gen_result, opt) loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda()) # Backward pass loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.item() torch.cuda.synchronize() # Print total_time = time.time() - start if iteration % opt.print_freq == 1: print('Read data:', time.time() - start) if not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, data_time = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, data_time, total_time)) else: print("iter {} (epoch {}), avg_reward = {:.3f}, data_time = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(reward[:,0]), data_time, total_time)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration) loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # Validate and save model if (iteration % opt.save_checkpoint_every == 0): # Evaluate model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( dp_model, crit, loader, eval_kwargs) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Our metric is CIDEr if available, otherwise validation loss if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss # Save model in checkpoint path best_flag = False if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(histories, f) # Save model to unique file if new best model if best_flag: model_fname = 'model-best-i{:05d}-score{:.4f}.pth'.format( iteration, best_val_score) infos_fname = 'model-best-i{:05d}-infos.pkl'.format(iteration) checkpoint_path = os.path.join(opt.checkpoint_path, model_fname) torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open(os.path.join(opt.checkpoint_path, infos_fname), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): # opt.use_att = utils.if_use_att(opt.caption_model) opt.use_att = True if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5 loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length print(opt.checkpoint_path) tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_'+opt.id+'.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same=["caption_model", "rnn_type", "rnn_size", "num_layers"] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')): with open(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) critic_loss_history = histories.get('critic_loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) variance_history = histories.get('variance_history', {}) time_history = histories.get('time_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt).cuda() dp_model = model ######################### Actor-critic Training ##################################################################### update_lr_flag = True # Assure in training mode dp_model.train() #TODO: change this to a flag crit = utils.LanguageModelCriterion_binary() rl_crit = utils.RewardCriterion_binary() optimizer = utils.build_optimizer(model.parameters(), opt) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile(os.path.join(opt.start_from,"optimizer.pth")): optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) first_order = 0 second_order = 0 while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate ** frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False update_lr_flag = False # Load data from train split (0) data = loader.get_batch('train') if data['bounds']['it_pos_now'] > 10000: loader.reset_iterator('train') continue dp_model.train() torch.cuda.synchronize() start = time.time() gen_result = None tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']] tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp optimizer.zero_grad() if not sc_flag: loss = crit(dp_model(fc_feats, att_feats, labels, att_masks), labels[:,1:], masks[:,1:], dp_model.depth, dp_model.vocab2code, dp_model.phi_list, dp_model.cluster_size) else: if opt.rl_type == 'sc': gen_result, sample_logprobs = dp_model(fc_feats, att_feats, att_masks, opt={'sample_max':0}, mode='sample') reward = get_self_critical_reward(dp_model, fc_feats, att_feats, att_masks, data, gen_result, opt) loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda(), dp_model.depth) elif opt.rl_type == 'reinforce': gen_result, sample_logprobs = dp_model(fc_feats, att_feats, att_masks, opt={'sample_max':0}, mode='sample') reward = get_reward(data, gen_result, opt) loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda(), dp_model.depth) elif opt.rl_type == 'arm': loss = dp_model.get_arm_loss_binary_fast(fc_feats, att_feats, att_masks, opt, data, loader) #print(loss) reward = np.zeros([2,2]) elif opt.rl_type == 'rf4': loss,_,_,_ = get_rf_loss(dp_model, fc_feats, att_feats, att_masks, data, opt, loader) # print(loss) reward = np.zeros([2, 2]) elif opt.rl_type == 'ar': loss = get_ar_loss(dp_model, fc_feats, att_feats, att_masks, data, opt, loader) reward = np.zeros([2,2]) elif opt.rl_type =='mct_baseline': opt.rf_demean = 0 gen_result, sample_logprobs, probs, mct_baseline = get_mct_loss(dp_model, fc_feats, att_feats, att_masks, data, opt, loader) reward = get_reward(data, gen_result, opt) reward_cuda = torch.from_numpy(reward).float().cuda() mct_baseline[mct_baseline < 0] = reward_cuda[mct_baseline < 0] if opt.arm_step_sample == 'greedy': sample_logprobs = sample_logprobs * probs loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda() - mct_baseline) elif opt.rl_type == 'arsm_baseline': opt.arm_as_baseline = 1 opt.rf_demean = 0 gen_result, sample_logprobs, probs, arm_baseline = get_arm_loss(dp_model, fc_feats, att_feats, att_masks, data, opt, loader) reward = get_reward(data, gen_result, opt) reward_cuda = torch.from_numpy(reward).float().cuda() arm_baseline[arm_baseline < 0] = reward_cuda[arm_baseline < 0] if opt.arm_step_sample == 'greedy' and False: sample_logprobs = sample_logprobs * probs loss = rl_crit(sample_logprobs, gen_result.data, reward_cuda - arm_baseline) elif opt.rl_type == 'ars_indicator': opt.arm_as_baseline = 1 opt.rf_demean = 0 gen_result, sample_logprobs, probs, arm_baseline = get_arm_loss(dp_model, fc_feats, att_feats, att_masks, data, opt, loader) reward = get_self_critical_reward(dp_model, fc_feats, att_feats, att_masks, data, gen_result, opt) reward_cuda = torch.from_numpy(reward).float().cuda() loss = rl_crit(sample_logprobs, gen_result.data, reward_cuda * arm_baseline) if opt.mle_weights != 0: loss += opt.mle_weights * crit(dp_model(fc_feats, att_feats, labels, att_masks), labels[:, 1:], masks[:, 1:]) #TODO make sure all sampling replaced by greedy for critic #### update the actor loss.backward() # with open(os.path.join(opt.checkpoint_path, 'embeddings.pkl'), 'wb') as f: # cPickle.dump(list(dp_model.embed.parameters())[0].data.cpu().numpy(), f) ## compute variance gradient = torch.zeros([0]).cuda() for i in model.parameters(): gradient = torch.cat((gradient, i.grad.view(-1)), 0) first_order = 0.999 * first_order + 0.001 * gradient second_order = 0.999 * second_order + 0.001 * gradient.pow(2) # print(torch.max(torch.abs(gradient))) variance = torch.mean(torch.abs(second_order - first_order.pow(2))).item() if opt.rl_type != 'arsm' or not sc_flag: utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() # ### update the critic train_loss = loss.item() torch.cuda.synchronize() end = time.time() if (iteration % opt.losses_log_every == 0): if not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) print(opt.checkpoint_path) else: print("iter {} (epoch {}), avg_reward = {:.3f}, variance = {:g}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(reward[:, 0]), variance, end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward), iteration) add_summary_value(tb_summary_writer, 'variance', variance, iteration) loss_history[iteration] = train_loss if not sc_flag else np.mean(reward) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob variance_history[iteration] = variance time_history[iteration] = end - start # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils_binary.eval_split(dp_model, crit, loader, eval_kwargs) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k,v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions} # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = - val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True if not os.path.isdir(opt.checkpoint_path): os.mkdir(opt.checkpoint_path) checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) checkpoint_path = os.path.join(opt.checkpoint_path, opt.critic_model + '_model.pth') print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['critic_loss_history'] = critic_loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history histories['variance_history'] = variance_history histories['time'] = time_history # histories['variance'] = 0 with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'.pkl'), 'wb') as f: cPickle.dump(infos, f) with open(os.path.join(opt.checkpoint_path, 'histories_'+opt.id+'.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
# Assign the learning rate ens_opt = utils.manage_lr(epoch, ens_opt, val_losses) utils.scale_lr(optimizer, ens_opt.scale_lr) # set the decayed rate lg.log_optimizer(ens_opt, optimizer) update_lr_flag = False # Load data from train split (0) data = loader.get_batch('train') torch.cuda.synchronize() start = time.time() # Forward the ensemble real_loss, loss = ens_model.step(data) optimizer.zero_grad() # // Move loss.backward() grad_norm = [] grad_norm.append(utils.clip_gradient(optimizer, opt.grad_clip)) optimizer.step() train_loss = loss.data[0] if np.isnan(train_loss): sys.exit('Loss is nan') train_real_loss = real_loss.data[0] try: train_kld_loss = kld_loss.data[0] train_recon_loss = recon_loss.data[0] except: pass # grad_norm = [utils.get_grad_norm(optimizer)] torch.cuda.synchronize() end = time.time() losses = {'train_loss': train_loss, 'train_real_loss': train_real_loss}
def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.maxlen_sen opt.inc_seg = loader.inc_seg opt.seg_ix = loader.seg_ix tf_summary_writer = tf and tf.summary.FileWriter(opt.checkpoint_path) infos = {} histories = {} score_list = [] if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) best_val_score = None best_val_score = {} score_splits = ['val', 'test'] score_type = ['Bleu_4', 'METEOR', 'CIDEr'] for split_i in score_splits: for score_item in score_type: if split_i not in best_val_score.keys(): best_val_score[split_i] = {} best_val_score[split_i][score_item] = 0.0 if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', best_val_score) model = models.setup(opt) device_ids = [0, 1] torch.cuda.set_device(device_ids[0]) model = nn.DataParallel(model, device_ids=device_ids) model = model.cuda() update_lr_flag = True # Assure in training mode model.module.train() crit = utils.LanguageModelCriterion() optimizer = optim.Adam(model.module.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) #optimizer = nn.DataParallel(optimizer, device_ids=device_ids) # Load the optimizer if vars(opt).get('start_from', None) is not None: optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.module.ss_prob = opt.ss_prob update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [data['fc_feats'], data['labels'], data['x_phrase_mask_0'], data['x_phrase_mask_1'], \ data['label_masks'], data['salicy_seg'], data['seg_mask']] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] fc_feats, seq, phrase_mask_0, phrase_mask_1, masks, salicy_seg, seg_mask = tmp optimizer.zero_grad() remove_len = 2 outputs, alphas = model.module(fc_feats, seq, phrase_mask_0, phrase_mask_1, masks, seg_mask, remove_len) loss = crit(outputs, seq[remove_len:, :].permute(1, 0), masks[remove_len:, :].permute(1, 0)) alphas = alphas.permute(1, 0, 2) salicy_seg = salicy_seg[:, :, :] seg_mask = seg_mask[:, :] if opt.salicy_hard == False: if opt.salicy_loss_type == 'l2': salicy_loss = (((((salicy_seg * seg_mask[:, :, None] - alphas * seg_mask[:, :, None])**2).sum(0) ).sum(-1))**(0.5)).mean() if opt.salicy_loss_type == 'kl': #alphas: len_sen, batch_size, num_frame salicy_loss = kullback_leibler2( alphas * seg_mask[:, :, None], salicy_seg * seg_mask[:, :, None]) salicy_loss = (((salicy_loss * seg_mask[:, :, None]).sum(-1)).sum(0)).mean() elif opt.salicy_hard == True: #salicy len_sen, batch_size, num_frame salicy_loss = -torch.log((alphas * salicy_seg).sum(-1) + 1e-8) #salicy_loss len_sen, batch_size salicy_loss = ((salicy_loss * seg_mask).sum(0)).mean() loss = loss + opt.salicy_alpha * salicy_loss loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if tf is not None: add_summary_value(tf_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tf_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tf_summary_writer, 'scheduled_sampling_prob', model.module.ss_prob, iteration) tf_summary_writer.flush() loss_history[iteration] = train_loss lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.module.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = { 'split': 'val', 'dataset': opt.dataset, 'remove_len': remove_len } eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats, score_list_i = eval_utils.eval_split( model.module, crit, loader, eval_kwargs) score_list.append(score_list_i) np.savetxt('./save/train_valid_test.txt', score_list, fmt='%.3f') # Write validation result into summary if tf is not None: add_summary_value(tf_summary_writer, 'validation loss', val_loss, iteration) for k in lang_stats.keys(): for v in lang_stats[k].keys(): add_summary_value(tf_summary_writer, k + v, lang_stats[k][v], iteration) tf_summary_writer.flush() val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['val']['CIDEr'] else: current_score = -val_loss best_flag = {} for split_i in score_splits: for score_item in score_type: if split_i not in best_flag.keys(): best_flag[split_i] = {} best_flag[split_i][score_item] = False if True: # if true for split_i in score_splits: for score_item in score_type: if best_val_score is None or lang_stats[split_i][ score_item] > best_val_score[split_i][ score_item]: best_val_score[split_i][score_item] = lang_stats[ split_i][score_item] best_flag[split_i][score_item] = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.module.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(histories, f) for split_i in score_splits: for score_item in score_type: if best_flag[split_i][score_item]: checkpoint_path = os.path.join( opt.checkpoint_path, 'model-best_' + split_i + '_' + score_item + '.pth') torch.save(model.module.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join( opt.checkpoint_path, 'infos_' + split_i + '_' + score_item + '_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(rank, model, opt, optimizer=None): torch.manual_seed(opt.seed + rank) if opt.use_cuda: torch.cuda.manual_seed(opt.seed + rank) loader = DataLoader(opt) index_2_word = loader.get_vocab() opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length infos = {} if opt.start_from is not None: # open old infos and check if models are compatible with open( os.path.join(opt.start_from, 'infos_' + opt.load_model_id + '.pkl'), 'rb') as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] # for checkme in need_be_same: # assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = infos.get('val_result_history', {}) loss_history = infos.get('loss_history', {}) lr_history = infos.get('lr_history', {}) ss_prob_history = infos.get('ss_prob_history', {}) sorted_lr = sorted(lr_history.items(), key=operator.itemgetter(1)) if opt.load_lr and len(lr_history) > 0: opt.optim_rl_lr = sorted_lr[0][1] / opt.optim_rl_lr_ratio loader.iterators = infos.get('iterators', loader.iterators) loader.split_image_id = infos.get('split_image_id', loader.split_image_id) entropy_reg = opt.entropy_reg best_val_score = 0 if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) update_lr_flag = True if opt.caption_model == 'show_tell': crit = utils.LanguageModelCriterion(opt) rl_crit = utils.RewardCriterion(opt) elif opt.caption_model == 'review_net': crit = utils.ReviewNetCriterion(opt) rl_crit = utils.ReviewNetRewardCriterion(opt) elif opt.caption_model == 'recurrent_fusion_model': crit = utils.ReviewNetEnsembleCriterion(opt) rl_crit = utils.ReviewNetRewardCriterion(opt) else: raise Exception("caption_model not supported: {}".format( opt.caption_model)) if optimizer is None: if opt.optim == 'adam': optimizer = optim.Adam(model.parameters(), lr=opt.optim_rl_lr, betas=(opt.optim_adam_beta1, opt.optim_adam_beta2), weight_decay=opt.optim_weight_decay) elif opt.optim == 'rmsprop': optimizer = optim.RMSprop(model.parameters(), lr=opt.optim_rl_lr, momentum=opt.optim_momentum, alpha=opt.optim_rmsprop_alpha, weight_decay=opt.weight_decay) elif opt.optim == 'sgd': optimizer = optim.SGD(model.parameters(), lr=opt.optim_rl_lr, momentum=opt.optim_momentum, weight_decay=opt.optim_weight_decay) elif opt.optim == 'adagrad': optimizer = optim.Adagrad(model.parameters(), lr=opt.optim_rl_lr, lr_decay=opt.optim_lr_decay, weight_decay=opt.optim_weight_decay) elif opt.optim == 'adadelta': optimizer = optim.Adadelta(model.parameters(), rho=opt.optim_rho, eps=opt.optim_epsilon, lr=opt.optim_rl_lr, weight_decay=opt.optim_weight_decay) else: raise Exception("optim not supported: {}".format(opt.feature_type)) # Load the optimizer if opt.load_lr and vars(opt).get( 'start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, 'optimizer_' + opt.load_model_id + '.pth')): optimizer.load_state_dict( torch.load( os.path.join(opt.start_from, 'optimizer_' + opt.load_model_id + '.pth'))) utils.set_lr(optimizer, opt.optim_rl_lr) num_period_best = 0 current_score = 0 while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.optim_rl_lr * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.optim_rl_lr update_lr_flag = False start = time.time() data = loader.get_batch('train') if opt.use_cuda: torch.cuda.synchronize() if opt.feature_type == 'feat_array': fc_feat_array = data['fc_feats_array'] att_feat_array = data['att_feats_array'] assert (len(fc_feat_array) == len(att_feat_array)) for feat_id in range(len(fc_feat_array)): if opt.use_cuda: fc_feat_array[feat_id] = Variable( torch.from_numpy(fc_feat_array[feat_id]), requires_grad=False).cuda() att_feat_array[feat_id] = Variable( torch.from_numpy(att_feat_array[feat_id]), requires_grad=False).cuda() else: fc_feat_array[feat_id] = Variable(torch.from_numpy( fc_feat_array[feat_id]), requires_grad=False) att_feat_array[feat_id] = Variable(torch.from_numpy( att_feat_array[feat_id]), requires_grad=False) tmp = [data['labels'], data['masks'], data['top_words']] if opt.use_cuda: tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] else: tmp = [ Variable(torch.from_numpy(_), requires_grad=False) for _ in tmp ] labels, masks, top_words = tmp else: tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['top_words'] ] if opt.use_cuda: tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] else: tmp = [ Variable(torch.from_numpy(_), requires_grad=False) for _ in tmp ] fc_feats, att_feats, labels, masks, top_words = tmp optimizer.zero_grad() if opt.caption_model == 'show_tell': gen_result, sample_logprobs, logprobs_all = model.sample( fc_feats, att_feats, {'sample_max': 0}) rewards = get_rewards.get_self_critical_reward( index_2_word, model, fc_feats, att_feats, data, gen_result, opt) sample_logprobs_old = Variable(sample_logprobs.data, requires_grad=False) if opt.use_cuda: loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(rewards).float().cuda(), requires_grad=False), logprobs_all, entropy_reg, sample_logprobs_old, opt) else: loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(rewards).float(), requires_grad=False), logprobs_all, entropy_reg, sample_logprobs_old, opt) elif opt.caption_model == 'recurrent_fusion_model': gen_result, sample_logprobs, logprobs_all, top_pred = model.sample( fc_feat_array, att_feat_array, {'sample_max': 0}) rewards = get_rewards.get_self_critical_reward_feat_array( index_2_word, model, fc_feat_array, att_feat_array, data, gen_result, opt) sample_logprobs_old = Variable(sample_logprobs.data, requires_grad=False) if opt.use_cuda: loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(rewards).float().cuda(), requires_grad=False), logprobs_all, entropy_reg, top_pred, top_words, opt.reason_weight, sample_logprobs_old, opt) else: loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(rewards).float(), requires_grad=False), logprobs_all, entropy_reg, top_pred, top_words, opt.reason_weight, sample_logprobs_old, opt) elif opt.caption_model == 'review_net': gen_result, sample_logprobs, logprobs_all, top_pred = model.sample( fc_feats, att_feats, {'sample_max': 0}) rewards = get_rewards.get_self_critical_reward( index_2_word, model, fc_feats, att_feats, data, gen_result, opt) sample_logprobs_old = Variable(sample_logprobs.data, requires_grad=False) if opt.use_cuda: loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(rewards).float().cuda(), requires_grad=False), logprobs_all, entropy_reg, top_pred, top_words, opt.reason_weight, sample_logprobs_old, opt) else: loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(rewards).float(), requires_grad=False), logprobs_all, entropy_reg, top_pred, top_words, opt.reason_weight, sample_logprobs_old, opt) else: raise Exception("caption_model not supported: {}".format( opt.caption_model)) if opt.use_ppo and opt.ppo_k > 0: loss.backward(retain_graph=True) else: loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] if opt.use_ppo: for i in range(opt.ppo_k): print(i) optimizer.zero_grad() loss.backward(retain_graph=True) utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if opt.use_cuda: torch.cuda.synchronize() end = time.time() # Update the iteration and epoch if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if iteration % opt.losses_log_every == 0: loss_history[iteration] = np.mean(rewards[:, 0]) lr_history[iteration] = opt.current_lr # make evaluation on validation set, and save model if iteration % opt.save_checkpoint_every == 0: # eval model eval_kwargs = { 'eval_split': 'val', 'dataset': opt.input_json, 'caption_model': opt.caption_model, 'reason_weight': opt.reason_weight, 'guiding_l1_penality': opt.guiding_l1_penality, 'use_cuda': opt.use_cuda, 'feature_type': opt.feature_type, 'rank': rank } eval_kwargs.update(vars(opt)) eval_kwargs['eval_split'] = 'val' val_loss, predictions, lang_stats = eval_utils.eval_split( model, crit, loader, eval_kwargs) # Write validation result into summary val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } print("iter {} (epoch {}), val_loss = {:.3f}".format( iteration, epoch, val_loss)) # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True num_period_best = 1 else: num_period_best = num_period_best + 1 # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_image_id'] = loader.split_image_id infos['best_val_score'] = best_val_score infos['opt'] = opt infos['val_result_history'] = val_result_history infos['loss_history'] = loss_history infos['lr_history'] = lr_history infos['ss_prob_history'] = ss_prob_history infos['vocab'] = loader.get_vocab() with open( os.path.join( opt.checkpoint_path, 'rl_infos_' + opt.id + '_' + str(rank) + '.pkl'), 'wb') as f: cPickle.dump(infos, f) if best_flag: checkpoint_path = os.path.join( opt.checkpoint_path, 'rl_model_' + opt.id + '_' + str(rank) + '-best.pth') torch.save(model.state_dict(), checkpoint_path) optimizer_path = os.path.join( opt.checkpoint_path, 'rl_optimizer_' + opt.id + '_' + str(rank) + '-best.pth') torch.save(optimizer.state_dict(), optimizer_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join( opt.checkpoint_path, 'rl_infos_' + opt.id + '_' + str(rank) + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) if num_period_best >= opt.num_eval_no_improve: print('no improvement, exit') sys.exit() print("rank {}, iter {}, (epoch {}), avg_reward: {:.3f}, train_loss: {}, learning rate: {}, current cider: {:.3f}, best cider: {:.3f}, time: {:.3f}" \ .format(rank, iteration, epoch, np.mean(rewards[:, 0]), train_loss, opt.current_lr, current_score, best_val_score, (end-start))) iteration += 1 # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tf_summary_writer = tf and tf.summary.FileWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) modelT = Att2inModel(opt) if vars(opt).get('start_from', None) is not None: assert os.path.isdir( opt.start_from), " %s must be a a path" % opt.start_from assert os.path.isfile( os.path.join(opt.start_from, "infos_" + opt.id + ".pkl") ), "infos.pkl file does not exist in path %s" % opt.start_from modelT.load_state_dict( torch.load(os.path.join(opt.start_from, 'model.pth'))) modelT.cuda() modelS = Att2inModel(opt) if vars(opt).get('start_from', None) is not None: assert os.path.isdir( opt.start_from), " %s must be a a path" % opt.start_from assert os.path.isfile( os.path.join(opt.start_from, "infos_" + opt.id + ".pkl") ), "infos.pkl file does not exist in path %s" % opt.start_from modelS.load_state_dict( torch.load(os.path.join(opt.start_from, 'model.pth'))) modelS.cuda() logger = Logger(opt) update_lr_flag = True # Assure in training mode modelT.train() modelS.train() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer_S = optim.Adam(modelS.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) optimizer_T = optim.Adam(modelT.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer_S.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: if update_lr_flag: opt, sc_flag, update_lr_flag, modelS, optimizer_S = update_lr( opt, epoch, modelS, optimizer_S) opt, sc_flag, update_lr_flag, modelT, optimizer_T = update_lr( opt, epoch, modelT, optimizer_T) # Load data from train split (0) data = loader.get_batch('train', seq_per_img=opt.seq_per_img) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'] ] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] fc_feats, att_feats, labels, masks = tmp optimizer_S.zero_grad() optimizer_T.zero_grad() if not sc_flag: loss = crit(modelS(fc_feats, labels), labels[:, 1:], masks[:, 1:]) loss.backward() else: gen_result_S, sample_logprobs_S = modelS.sample( fc_feats, att_feats, {'sample_max': 0}) reward_S = get_self_critical_reward_forTS(modelT, modelS, fc_feats, att_feats, data, gen_result_S, logger) gen_result_T, sample_logprobs_T = modelT.sample( fc_feats, att_feats, {'sample_max': 0}) reward_T = get_self_critical_reward_forTS(modelS, modelT, fc_feats, att_feats, data, gen_result_T, logger) loss_S = rl_crit( sample_logprobs_S, gen_result_S, Variable(torch.from_numpy(reward_S).float().cuda(), requires_grad=False)) loss_T = rl_crit( sample_logprobs_T, gen_result_T, Variable(torch.from_numpy(reward_T).float().cuda(), requires_grad=False)) loss_S.backward() loss_T.backward() loss = loss_S + loss_T #reward = reward_S + reward_T utils.clip_gradient(optimizer_S, opt.grad_clip) utils.clip_gradient(optimizer_T, opt.grad_clip) optimizer_S.step() optimizer_T.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() if not sc_flag: log = "iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start) logger.write(log) else: log = "iter {} (epoch {}), S_avg_reward = {:.3f}, T_avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(reward_S[:,0]), np.mean(reward_T[:,0]), end - start) logger.write(log) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if tf is not None: add_summary_value(tf_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tf_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tf_summary_writer, 'scheduled_sampling_prob', modelS.ss_prob, iteration) if sc_flag: add_summary_value(tf_summary_writer, 'avg_reward_S', np.mean(reward_S[:, 0]), iteration) add_summary_value(tf_summary_writer, 'avg_reward_T', np.mean(reward_T[:, 0]), iteration) tf_summary_writer.flush() loss_history[iteration] = train_loss if not sc_flag else np.mean( reward_S[:, 0] + reward_T[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = modelS.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( modelS, crit, loader, logger, eval_kwargs) logger.write_dict(lang_stats) # Write validation result into summary if tf is not None: add_summary_value(tf_summary_writer, 'validation loss', val_loss, iteration) for k, v in lang_stats.items(): add_summary_value(tf_summary_writer, k, v, iteration) tf_summary_writer.flush() val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'modelS.pth') torch.save(modelS.state_dict(), checkpoint_path) print("modelS saved to {}".format(checkpoint_path)) checkpoint_path = os.path.join(opt.checkpoint_path, 'modelT.pth') torch.save(modelS.state_dict(), checkpoint_path) print("modelT saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'S_optimizer.pth') torch.save(optimizer_S.state_dict(), optimizer_path) optimizer_path = os.path.join(opt.checkpoint_path, 'T_optimizer.pth') torch.save(optimizer_T.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'modelS-best.pth') torch.save(modelS.state_dict(), checkpoint_path) print("modelS saved to {}".format(checkpoint_path)) checkpoint_path = os.path.join(opt.checkpoint_path, 'modelT-best.pth') torch.save(modelT.state_dict(), checkpoint_path) print("modelT saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tf_summary_writer = tf and tf.summary.FileWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt) model.cuda() update_lr_flag = True model.train() crit = utils.LanguageModelCriterion() optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None: optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'] ] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] fc_feats, att_feats, labels, masks = tmp optimizer.zero_grad() loss = crit(model(fc_feats, att_feats, labels), labels[:, 1:], masks[:, 1:]) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if tf is not None: add_summary_value(tf_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tf_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tf_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) tf_summary_writer.flush() loss_history[iteration] = train_loss lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # Stop if reaching max epochs if epoch >= 8: break
def train(opt): loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length infos = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = infos.get('val_result_history', {}) loss_history = infos.get('loss_history', {}) lr_history = infos.get('lr_history', {}) ss_prob_history = infos.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt) model.cuda() update_lr_flag = True # Assure in training mode model.train() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [data['fc_feats'], data['att_feats']] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] fc_feats, att_feats = tmp optimizer.zero_grad() gen_result, sample_logprobs = model.sample(fc_feats, att_feats, {'sample_max': 0}) rewards = get_rewards.get_self_critical_reward(model, fc_feats, att_feats, data, gen_result) loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(rewards).float().cuda(), requires_grad=False)) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(rewards[:,0]), end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): loss_history[iteration] = np.mean(rewards[:, 0]) lr_history[iteration] = opt.current_lr # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( model, crit, loader, eval_kwargs) # Write validation result into summary val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['val_result_history'] = val_result_history infos['loss_history'] = loss_history infos['lr_history'] = lr_history infos['ss_prob_history'] = ss_prob_history infos['vocab'] = loader.get_vocab() with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) from dataloader import DataLoader loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.vocab_ccg_size = loader.vocab_ccg_size opt.seq_length = loader.seq_length infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) cnn_model = utils.build_cnn(opt) cnn_model.cuda() model = models.setup(opt) model.cuda() # model = DataParallel(model) if vars(opt).get('start_from', None) is not None: # check if all necessary files exist assert os.path.isdir( opt.start_from), " %s must be a a path" % opt.start_from assert os.path.isfile( os.path.join(opt.start_from, "infos_" + opt.id + ".pkl") ), "infos.pkl file does not exist in path %s" % opt.start_from model.load_state_dict( torch.load(os.path.join(opt.start_from, 'model.pth'))) update_lr_flag = True model.train() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() multilabel_crit = nn.MultiLabelSoftMarginLoss().cuda() # optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate) if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: print('finetune mode') cnn_optimizer = optim.Adam([\ {'params': module.parameters()} for module in cnn_model._modules.values()[5:]\ ], lr=opt.cnn_learning_rate, weight_decay=opt.cnn_weight_decay) if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): if os.path.isfile(os.path.join(opt.start_from, 'optimizer.pth')): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: if os.path.isfile(os.path.join(opt.start_from, 'optimizer-cnn.pth')): cnn_optimizer.load_state_dict( torch.load( os.path.join(opt.start_from, 'optimizer-cnn.pth'))) eval_kwargs = {'split': 'val', 'dataset': opt.input_json, 'verbose': True} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( cnn_model, model, crit, loader, eval_kwargs, True) epoch_start = time.time() while True: if update_lr_flag: if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob #model.module.ss_prob = opt.ss_prob if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True else: sc_flag = False # Update the training stage of cnn for p in cnn_model.parameters(): p.requires_grad = True # Fix the first few layers: for module in cnn_model._modules.values()[:5]: for p in module.parameters(): p.requires_grad = False cnn_model.train() update_lr_flag = False cnn_model.apply(utils.set_bn_fix) cnn_model.apply(utils.set_bn_eval) start = time.time() torch.cuda.synchronize() data = loader.get_batch('train') if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: multilabels = [ data['detection_infos'][i]['label'] for i in range(len(data['detection_infos'])) ] tmp = [ data['labels'], data['masks'], np.array(multilabels, dtype=np.int16) ] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] labels, masks, multilabels = tmp images = data[ 'images'] # it cannot be turned into tensor since different sizes. _fc_feats_2048 = [] _fc_feats_81 = [] _att_feats = [] for i in range(loader.batch_size): x = Variable(torch.from_numpy(images[i]), requires_grad=False).cuda() x = x.unsqueeze(0) att_feats, fc_feats_81 = cnn_model(x) fc_feats_2048 = att_feats.mean(3).mean(2).squeeze() att_feats = F.adaptive_avg_pool2d(att_feats, [14, 14]).squeeze().permute( 1, 2, 0) #(0, 2, 3, 1) _fc_feats_2048.append(fc_feats_2048) _fc_feats_81.append(fc_feats_81) _att_feats.append(att_feats) _fc_feats_2048 = torch.stack(_fc_feats_2048) _fc_feats_81 = torch.stack(_fc_feats_81) _att_feats = torch.stack(_att_feats) att_feats = _att_feats.unsqueeze(1).expand(*((_att_feats.size(0), loader.seq_per_img,) + \ _att_feats.size()[1:])).contiguous().view(*((_att_feats.size(0) * loader.seq_per_img,) + \ _att_feats.size()[1:])) fc_feats_2048 = _fc_feats_2048.unsqueeze(1).expand(*((_fc_feats_2048.size(0), loader.seq_per_img,) + \ _fc_feats_2048.size()[1:])).contiguous().view(*((_fc_feats_2048.size(0) * loader.seq_per_img,) + \ _fc_feats_2048.size()[1:])) fc_feats_81 = _fc_feats_81 # cnn_optimizer.zero_grad() else: tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'] ] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] fc_feats, att_feats, labels, masks = tmp optimizer.zero_grad() if not sc_flag: loss1 = crit(model(fc_feats_2048, att_feats, labels), labels[:, 1:], masks[:, 1:]) loss2 = multilabel_crit(fc_feats_81.double(), multilabels.double()) loss = 0.8 * loss1 + 0.2 * loss2.float() else: gen_result, sample_logprobs = model.sample(fc_feats_2048, att_feats, {'sample_max': 0}) reward = get_self_critical_reward(model, fc_feats_2048, att_feats, data, gen_result) loss1 = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(reward).float().cuda(), requires_grad=False)) loss2 = multilabel_crit(fc_feats_81.double(), multilabels.double()) loss3 = crit(model(fc_feats_2048, att_feats, labels), labels[:, 1:], masks[:, 1:]) loss = 0.995 * loss1 + 0.005 * (loss2.float() + loss3) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] mle_loss = loss1.data[0] multilabel_loss = loss2.data[0] torch.cuda.synchronize() end = time.time() if not sc_flag and iteration % 2500 == 0: print("iter {} (epoch {}), mle_loss = {:.3f}, multilabel_loss = {:.3f}, train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, mle_loss, multilabel_loss, train_loss, end - start)) if sc_flag and iteration % 2500 == 0: print("iter {} (epoch {}), avg_reward = {:.3f}, mle_loss = {:.3f}, multilabel_loss = {:.3f}, train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(reward[:,0]), mle_loss, multilabel_loss, train_loss, end - start)) iteration += 1 if (iteration % opt.losses_log_every == 0): loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob if (iteration % opt.save_checkpoint_every == 0): eval_kwargs = { 'split': 'val', 'dataset': opt.input_json, 'verbose': True } eval_kwargs.update(vars(opt)) if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: val_loss, predictions, lang_stats = eval_utils.eval_split( cnn_model, model, crit, loader, eval_kwargs, True) else: val_loss, predictions, lang_stats = eval_utils.eval_split( cnn_model, model, crit, loader, eval_kwargs, False) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if True: if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) cnn_checkpoint_path = os.path.join(opt.checkpoint_path, 'model-cnn.pth') torch.save(cnn_model.state_dict(), cnn_checkpoint_path) print("cnn model saved to {}".format(cnn_checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after: cnn_optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer-cnn.pth') torch.save(cnn_optimizer.state_dict(), cnn_optimizer_path) infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) cnn_checkpoint_path = os.path.join(opt.checkpoint_path, 'model-cnn-best.pth') torch.save(cnn_model.state_dict(), cnn_checkpoint_path) print("cnn model saved to {}".format(cnn_checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True print("epoch: " + str(epoch) + " during: " + str(time.time() - epoch_start)) epoch_start = time.time() if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): print("=================Training Information==============") print("start from {}".format(opt.start_from)) print("box from {}".format(opt.input_box_dir)) print("input json {}".format(opt.input_json)) print("attributes from {}".format(opt.input_att_dir)) print("features from {}".format(opt.input_fc_dir)) print("batch size ={}".format(opt.batch_size)) print("#GPU={}".format(torch.cuda.device_count())) # Deal with feature things before anything opt.use_fc, opt.use_att = utils.if_use_feat(opt.caption_model) if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5 acc_steps = getattr(opt, 'acc_steps', 1) name_append = opt.name_append if len(name_append) > 0 and name_append[0] != '-': name_append = '_' + name_append loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length opt.write_summary = write_summary if opt.write_summary: print("write summary to {}".format(opt.checkpoint_path)) tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible infors_path = os.path.join(opt.start_from, 'infos' + name_append + '.pkl') print("Load model information {}".format(infors_path)) with open(infors_path, 'rb') as f: infos = utils.pickle_load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme histories_path = os.path.join(opt.start_from, 'histories_' + name_append + '.pkl') if os.path.isfile(histories_path): with open(histories_path, 'rb') as f: histories = utils.pickle_load(f) else: # start from scratch print("Initialize training process from all begining") infos['iter'] = 0 infos['epoch'] = 0 infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['vocab'] = loader.get_vocab() infos['opt'] = opt iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) # sanity check for the saved model name has a correct index if opt.name_append.isdigit() and int(opt.name_append) < 100: assert int( opt.name_append ) == epoch, "dismatch in the model index and the real epoch number" epoch += 1 print( "==================start from {} epoch================".format(epoch)) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) # pdb.set_trace() loader.iterators = infos.get('iterators', loader.iterators) start_Img_idx = loader.iterators['train'] loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) opt.vocab = loader.get_vocab() model = models.setup(opt).cuda() del opt.vocab dp_model = torch.nn.DataParallel(model) lw_model = LossWrapper(model, opt) # wrap loss into model dp_lw_model = torch.nn.DataParallel(lw_model) epoch_done = True # Assure in training mode dp_lw_model.train() if opt.noamopt: assert opt.caption_model in [ 'transformer', 'aoa' ], 'noamopt can only work with transformer' optimizer = utils.get_std_opt(model, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup) optimizer._step = iteration elif opt.reduce_on_plateau: optimizer = utils.build_optimizer(model.parameters(), opt) optimizer = utils.ReduceLROnPlateau(optimizer, factor=0.5, patience=3) else: optimizer = utils.build_optimizer(model.parameters(), opt) # Load the optimizer if vars(opt).get('start_from', None) is not None: optimizer_path = os.path.join(opt.start_from, 'optimizer' + name_append + '.pth') if os.path.isfile(optimizer_path): print("Loading optimizer............") optimizer.load_state_dict(torch.load(optimizer_path)) def save_checkpoint(model, infos, optimizer, histories=None, append=''): if len(append) > 0: append = '_' + append # if checkpoint_path doesn't exist if not os.path.isdir(opt.checkpoint_path): os.makedirs(opt.checkpoint_path) checkpoint_path = os.path.join(opt.checkpoint_path, 'model%s.pth' % (append)) torch.save(model.state_dict(), checkpoint_path) print("Save model state to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer%s.pth' % (append)) torch.save(optimizer.state_dict(), optimizer_path) print("Save model optimizer to {}".format(optimizer_path)) with open( os.path.join(opt.checkpoint_path, 'infos' + '%s.pkl' % (append)), 'wb') as f: utils.pickle_dump(infos, f) print("Save training information to {}".format( os.path.join(opt.checkpoint_path, 'infos' + '%s.pkl' % (append)))) if histories: with open( os.path.join(opt.checkpoint_path, 'histories_' + '%s.pkl' % (append)), 'wb') as f: utils.pickle_dump(histories, f) print("Save training historyes to {}".format( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '%s.pkl' % (append)))) try: while True: # pdb.set_trace() if epoch_done: if not opt.noamopt and not opt.reduce_on_plateau: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # set the decayed rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min( opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False epoch_done = False print("{}th Epoch Training starts now!".format(epoch)) with tqdm(total=len(loader.split_ix['train']), initial=start_Img_idx) as pbar: for i in range(start_Img_idx, len(loader.split_ix['train']), opt.batch_size): # import ipdb; ipdb.set_trace() start = time.time() if (opt.use_warmup == 1) and (iteration < opt.noamopt_warmup): opt.current_lr = opt.learning_rate * ( iteration + 1) / opt.noamopt_warmup utils.set_lr(optimizer, opt.current_lr) # Load data from train split (0) data = loader.get_batch('train') # print('Read data:', time.time() - start) if (iteration % acc_steps == 0): optimizer.zero_grad() torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] tmp = [_ if _ is None else _.cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp model_out = dp_lw_model(fc_feats, att_feats, labels, masks, att_masks, data['gts'], torch.arange(0, len(data['gts'])), sc_flag) loss = model_out['loss'].mean() loss_sp = loss / acc_steps loss_sp.backward() if ((iteration + 1) % acc_steps == 0): utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() torch.cuda.synchronize() train_loss = loss.item() end = time.time() # if not sc_flag: # print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" # .format(iteration, epoch, train_loss, end - start)) # else: # print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" # .format(iteration, epoch, model_out['reward'].mean(), end - start)) if not sc_flag: pbar.set_description( "iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" .format(iteration, epoch, train_loss, end - start)) else: pbar.set_description( "iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" .format(iteration, epoch, model_out['reward'].mean(), end - start)) # Update the iteration and epoch iteration += 1 pbar.update(opt.batch_size) if data['bounds']['wrapped']: # save after each epoch save_checkpoint(model, infos, optimizer, append=str(epoch)) epoch += 1 # infos['epoch'] = epoch epoch_done = True # Write validation result into summary if (iteration % opt.losses_log_every == 0) and opt.write_summary: add_summary_value(tb_summary_writer, 'loss/train_loss', train_loss, iteration) if opt.noamopt: opt.current_lr = optimizer.rate() elif opt.reduce_on_plateau: opt.current_lr = optimizer.current_lr add_summary_value(tb_summary_writer, 'hyperparam/learning_rate', opt.current_lr, iteration) add_summary_value( tb_summary_writer, 'hyperparam/scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', model_out['reward'].mean(), iteration) loss_history[ iteration] = train_loss if not sc_flag else model_out[ 'reward'].mean() lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # update infos infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix # make evaluation on validation set, and save model # TODO modify it to evaluate by each epoch # ipdb.set_trace() if (iteration % opt.save_checkpoint_every == 0) and eval_ and epoch > 20: model_path = os.path.join( opt.checkpoint_path, 'model_itr%s.pth' % (iteration)) eval_kwargs = { 'split': 'val', 'dataset': opt.input_json, 'model': model_path } eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( dp_model, lw_model.crit, loader, eval_kwargs) if opt.reduce_on_plateau: if 'CIDEr' in lang_stats: optimizer.scheduler_step(-lang_stats['CIDEr']) else: optimizer.scheduler_step(val_loss) # Write validation result into summary if opt.write_summary: add_summary_value(tb_summary_writer, 'loss/validation loss', val_loss, iteration) if lang_stats is not None: bleu_dict = {} for k, v in lang_stats.items(): if 'Bleu' in k: bleu_dict[k] = v if len(bleu_dict) > 0: tb_summary_writer.add_scalars( 'val/Bleu', bleu_dict, epoch) for k, v in lang_stats.items(): if 'Bleu' not in k: add_summary_value( tb_summary_writer, 'val/' + k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True # Dump miscalleous informations infos['best_val_score'] = best_val_score histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history # save_checkpoint(model, infos, optimizer, histories, append=str(iteration)) save_checkpoint(model, infos, optimizer, histories) # if opt.save_history_ckpt: # save_checkpoint(model, infos, optimizer, append=str(iteration)) if best_flag: save_checkpoint(model, infos, optimizer, append='best') print( "update best model at {} iteration--{} epoch". format(iteration, epoch)) start_Img_idx = 0 # if epoch_done: # go through the set, start a new epoch loop # break # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: print("epoch {} break all".format(epoch)) save_checkpoint(model, infos, optimizer) tb_summary_writer.close() print("============{} Training Done !==============".format( 'Refine' if opt.use_test or opt.use_val else '')) break except (RuntimeError, KeyboardInterrupt): print('Save ckpt on exception ...') save_checkpoint(model, infos, optimizer, append='_interrupt') print('Save ckpt done.') stack_trace = traceback.format_exc() print(stack_trace)
def train(opt): # Deal with feature things before anything opt.use_att = utils.if_use_att(opt.caption_model) ac = 0 loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open( os.path.join( opt.checkpoint_path, 'infos_' + opt.id + format(int(opt.start_from), '04') + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join( opt.checkpoint_path, 'histories_' + opt.id + format(int(opt.start_from), '04') + '.pkl')): with open( os.path.join( opt.checkpoint_path, 'histories_' + opt.id + format(int(opt.start_from), '04') + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt).cuda() #dp_model = torch.nn.DataParallel(model) #dp_model = torch.nn.DataParallel(model, [0,2,3]) dp_model = model update_lr_flag = True # Assure in training mode dp_model.train() for name, param in model.named_parameters(): print(name) crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() CE_ac = utils.CE_ac() optim_para = model.parameters() optimizer = utils.build_optimizer(optim_para, opt) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join( opt.checkpoint_path, 'optimizer' + opt.id + format(int(opt.start_from), '04') + '.pth')): optimizer.load_state_dict( torch.load( os.path.join( opt.checkpoint_path, 'optimizer' + opt.id + format(int(opt.start_from), '04') + '.pth'))) optimizer.zero_grad() accumulate_iter = 0 train_loss = 0 reward = np.zeros([1, 1]) sim_lambda = opt.sim_lambda reset_optimzer_index = 1 while True: if opt.self_critical_after != -1 and epoch >= opt.self_critical_after and reset_optimzer_index: opt.learning_rate_decay_start = opt.self_critical_after opt.learning_rate_decay_rate = opt.learning_rate_decay_rate_rl opt.learning_rate = opt.learning_rate_rl reset_optimzer_index = 0 if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch(opt.train_split) print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [data['labels'], data['masks'], data['mods']] tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp] labels, masks, mods = tmp tmp = [ data['att_feats'], data['att_masks'], data['attr_feats'], data['attr_masks'], data['rela_feats'], data['rela_masks'] ] tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp] att_feats, att_masks, attr_feats, attr_masks, rela_feats, rela_masks = tmp rs_data = {} rs_data['att_feats'] = att_feats rs_data['att_masks'] = att_masks rs_data['attr_feats'] = attr_feats rs_data['attr_masks'] = attr_masks rs_data['rela_feats'] = rela_feats rs_data['rela_masks'] = rela_masks if not sc_flag: logits, cw_logits = dp_model(rs_data, labels) ac = CE_ac(logits, labels[:, 1:], masks[:, 1:]) print('ac :{0}'.format(ac)) loss_lan = crit(logits, labels[:, 1:], masks[:, 1:]) else: gen_result, sample_logprobs, cw_logits = dp_model( rs_data, opt={'sample_max': 0}, mode='sample') reward = get_self_critical_reward(dp_model, rs_data, data, gen_result, opt) loss_lan = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda()) loss_cw = crit(cw_logits, mods[:, 1:], masks[:, 1:]) ac2 = CE_ac(cw_logits, mods[:, 1:], masks[:, 1:]) print('ac :{0}'.format(ac2)) if epoch < opt.step2_train_after: loss = loss_lan + sim_lambda * loss_cw else: loss = loss_lan accumulate_iter = accumulate_iter + 1 loss = loss / opt.accumulate_number loss.backward() if accumulate_iter % opt.accumulate_number == 0: utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() optimizer.zero_grad() iteration += 1 accumulate_iter = 0 train_loss = loss.item() * opt.accumulate_number train_loss_lan = loss_lan.item() train_loss_cw = loss_cw.item() end = time.time() if not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) print("train_loss_lan = {:.3f}, train_loss_cw = {:.3f}" \ .format(train_loss_lan, train_loss_cw)) else: print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(reward[:, 0]), end - start)) print("train_loss_lan = {:.3f}, train_loss_cw = {:.3f}" \ .format(train_loss_lan, train_loss_cw)) print('lr:{0}'.format(opt.current_lr)) torch.cuda.synchronize() # Update the iteration and epoch if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0) and (accumulate_iter % opt.accumulate_number == 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tb_summary_writer, 'train_loss_lan', train_loss_lan, iteration) add_summary_value(tb_summary_writer, 'train_loss_cw', train_loss_cw, iteration) add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) add_summary_value(tb_summary_writer, 'ac', ac, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration) loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0) and (accumulate_iter % opt.accumulate_number == 0): # eval model eval_kwargs = {'split': 'test', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) #val_loss, predictions, lang_stats = eval_utils_rs3.eval_split(dp_model, crit, loader, eval_kwargs) # Write validation result into summary # add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) # if lang_stats is not None: # for k,v in lang_stats.items(): # add_summary_value(tb_summary_writer, k, v, iteration) # val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions} # Save model if is improving on validation result # if opt.language_eval == 1: # current_score = lang_stats['CIDEr'] # else: # current_score = - val_loss current_score = 0 best_flag = False if True: # if true save_id = iteration / opt.save_checkpoint_every if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join( opt.checkpoint_path, 'model' + opt.id + format(int(save_id), '04') + '.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join( opt.checkpoint_path, 'optimizer' + opt.id + format(int(save_id), '04') + '.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join( opt.checkpoint_path, 'infos_' + opt.id + format(int(save_id), '04') + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join( opt.checkpoint_path, 'histories_' + opt.id + format(int(save_id), '04') + '.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): # setup dataloader loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length #set the checkpoint path opt.checkpoint_path = os.path.join(opt.checkpoint_path, opt.id) isExists = os.path.exists(opt.checkpoint_path) if not isExists: os.makedirs(opt.checkpoint_path) os.makedirs(opt.checkpoint_path + '/logs') print(opt.checkpoint_path + ' creating !') else: print(opt.checkpoint_path + ' already exists!') tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open( os.path.join( opt.checkpoint_path, 'infos_' + opt.id + format(int(opt.start_from), '04') + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "att_feat_size", "rnn_size", "input_encoding_size" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join( opt.checkpoint_path, 'histories_' + opt.id + format(int(opt.start_from), '04') + '.pkl')): with open( os.path.join( opt.checkpoint_path, 'histories_' + opt.id + format(int(opt.start_from), '04') + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) word_loss_history = histories.get('word_loss_history', {}) MAD_loss_history = histories.get('MAD_loss_history', {}) SAP_loss_history = histories.get('SAP_loss_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) lr_history = histories.get('lr_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) #set up model, assure in training mode threshold = opt.threshold sc_flag = False num_gpu = opt.num_gpu model = models.setup(opt).cuda(device=0) model.train() update_lr_flag = True dp_model = torch.nn.parallel.DataParallel(model) optimizer = optim.Adam(model.parameters(), opt.learning_rate, (opt.optim_alpha, opt.optim_beta), opt.optim_epsilon, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join( opt.checkpoint_path, 'optimizer' + opt.id + format(int(opt.start_from), '04') + '.pth')): optimizer.load_state_dict( torch.load( os.path.join( opt.checkpoint_path, 'optimizer' + opt.id + format(int(opt.start_from), '04') + '.pth'))) if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob optimizer.zero_grad() accumulate_iter = 0 train_loss = 0 subsequent_mat = np.load('data/markov_mat.npy') subsequent_mat = torch.from_numpy(subsequent_mat).cuda(device=0).float() subsequent_mat_all = subsequent_mat.clone() # for multi-GPU training for i in range(opt.num_gpu - 1): subsequent_mat_all = torch.cat([subsequent_mat_all, subsequent_mat], dim=0) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate for group in optimizer.param_groups: group['lr'] = opt.current_lr # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if sc_flag == False and opt.self_critical_after != -1 and epoch >= opt.self_critical_after: print('initializing CIDEr scorer...') s = time.time() global CiderD_scorer if (CiderD_scorer is None): CiderD_scorer = CiderD(df=opt.cached_tokens) #takes about 30s print('initlizing CIDEr scorers in {:3f}s'.format( time.time() - s)) sc_flag = True opt.learning_rate_decay_every = opt.learning_rate_decay_every * 2 #default 5 for xe, 10 for scst update_lr_flag = False print('current_lr is {}'.format(opt.current_lr)) start = time.time() data = loader.get_batch('train', opt.batch_size) torch.cuda.synchronize() fc_feats = None att_feats = None tmp = [ data['fc_feats'], data['labels'], data['masks'], data['att_feats'], data['attr_labels'], data['subsequent_labels'] ] tmp = [ _ if _ is None else torch.from_numpy(_).cuda(device=0) for _ in tmp ] fc_feats, labels, masks, att_feats, attr_labels, subsequent_labels = tmp #convert 1-1000 to 0-999 (perhaps done in preprocessing) subsequent_labels = subsequent_labels - 1 subsequent_mask = (subsequent_labels[:, 1:] >= 0).float() subsequent_labels = torch.where( subsequent_labels > 0, subsequent_labels, torch.zeros_like(subsequent_labels).int().cuda(device=0)) print('Read and process data:', time.time() - start) if not sc_flag: SAP_loss, word_loss, MAD_loss = dp_model( fc_feats, att_feats, labels, masks, attr_labels, subsequent_labels, subsequent_mask, subsequent_mat_all) SAP_loss = SAP_loss.mean() word_loss = word_loss.mean() MAD_loss = MAD_loss.mean() accumulate_iter = accumulate_iter + 1 loss = (word_loss + 0.2 * SAP_loss + 0.2 * MAD_loss) / opt.accumulate_number loss.backward() else: st = time.time() sm = torch.zeros([num_gpu, 1]).cuda( device=0) #indexs for sampling by probabilities gen_result, sample_logprobs, _ = dp_model(fc_feats, att_feats, attr_labels, subsequent_mat_all, sm, mode='sample') dp_model.eval() with torch.no_grad(): greedy_res, _, _ = dp_model(fc_feats, att_feats, attr_labels, subsequent_mat_all, mode='sample') dp_model.train() ed = time.time() print('GPU time is : {}s'.format(ed - st)) reward = get_self_critical_reward(gen_result, greedy_res, data['gts']) word_loss = dp_model(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda(), mode='scst_forward') word_loss = word_loss.mean() loss = word_loss #forward to minimize SAP loss and MAD loss SAP_loss, _, MAD_loss = dp_model(fc_feats, att_feats, labels, masks, attr_labels, subsequent_labels, subsequent_mask, subsequent_mat_all) SAP_loss = SAP_loss.mean() MAD_loss = MAD_loss.mean() loss = loss + 0.2 * SAP_loss + 0.2 * MAD_loss loss.backward() accumulate_iter = accumulate_iter + 1 if accumulate_iter % opt.accumulate_number == 0: utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() optimizer.zero_grad() iteration += 1 accumulate_iter = 0 train_loss = loss.item() * opt.accumulate_number end = time.time() #you can record the training log if you need #text_file = open(opt.checkpoint_path+'/logs/train_log_'+opt.id+'.txt', "aw") if not sc_flag: print("iter {} (epoch {}), SAP_loss = {:.3f}, word_loss = {:.3f}, MAD_loss = {:.3f} time/batch = {:.3f}" \ .format(iteration, epoch,SAP_loss, word_loss,MAD_loss, end - start)) #text_file.write("iter {} (epoch {}),SAP_loss = {:.3f}, word_loss {:.3f}, MAD_loss {:.3f},time/batch = {:.3f}\n" \ # .format(iteration, epoch,SAP_loss, word_loss, MAD_loss, end - start)) else: print("iter {} (epoch {}),SAP_loss = {:.3f}, avg_reward = {:.3f},MAD_loss = {:.3f} time/batch = {:.3f}" \ .format(iteration, epoch,SAP_loss,np.mean(reward[:, 0]),MAD_loss, end - start)) #text_file.write("iter {} (epoch {}), avg_reward = {:.3f} MAD_loss ={:.3f}, time/batch = {:.3f}\n" \ # .format(iteration, epoch, np.mean(reward[:, 0]), MAD_loss, end - start)) #text_file.close() torch.cuda.synchronize() # Update the iteration and epoch if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0) and (accumulate_iter % opt.accumulate_number == 0): add_summary_value(tb_summary_writer, 'word_loss', word_loss.item(), iteration) add_summary_value(tb_summary_writer, 'MAD_loss', MAD_loss.item(), iteration) add_summary_value(tb_summary_writer, 'SAP_loss', SAP_loss.item(), iteration) add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration) loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) word_loss_history[iteration] = word_loss.item() SAP_loss_history[iteration] = SAP_loss.item() MAD_loss_history[iteration] = MAD_loss.item() lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0) and (accumulate_iter % opt.accumulate_number == 0): # eval model eval_kwargs = { 'split': 'val', 'dataset': opt.input_json, 'num_images': -1, 'index_eval': 1, 'id': opt.id, 'beam': opt.beam, 'verbose_loss': 1, 'checkpoint_path': opt.checkpoint_path } eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats, precision, recall = eval_utils.eval_split( dp_model, loader, subsequent_mat_all, eval_kwargs) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } #save lang stats f_lang = open( opt.checkpoint_path + '/logs/lang_' + opt.id + '.txt', 'aw') f_lang.write( str(iteration) + ' ' + str(iteration / opt.save_checkpoint_every) + '\n') f_lang.write('val loss ' + str(val_loss) + '\n') for key_lang in lang_stats: f_lang.write(key_lang + ' ' + str(lang_stats[key_lang]) + '\n') f_lang.write('precision ' + str(precision) + ' recall ' + str(recall) + '\n') f_lang.close() # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False save_id = iteration / opt.save_checkpoint_every if best_val_score is None or current_score > best_val_score or current_score > threshold: best_val_score = current_score best_flag = True ##only save the improved models or when the CIDEr-D is larger than a given threshold checkpoint_path = os.path.join( opt.checkpoint_path, 'model' + opt.id + format(int(save_id), '04') + '.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join( opt.checkpoint_path, 'optimizer' + opt.id + format(int(save_id), '04') + '.pth') torch.save(optimizer.state_dict(), optimizer_path) #record the lang stats for saved mdoel f_lang = open( opt.checkpoint_path + '/logs/Best_lang_' + opt.id + '.txt', 'aw') f_lang.write( str(iteration) + ' ' + str(iteration / opt.save_checkpoint_every) + '\n') f_lang.write('val loss ' + str(val_loss) + '\n') for key_lang in lang_stats: f_lang.write(key_lang + ' ' + str(lang_stats[key_lang]) + '\n') f_lang.write('precision ' + str(precision) + ' recall ' + str(recall) + '\n') f_lang.close() # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['word_loss_history'] = loss_history histories['MAD_loss_history'] = MAD_loss_history histories['SAP_loss_history'] = SAP_loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join( opt.checkpoint_path, 'infos_' + opt.id + format(int(save_id), '04') + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join( opt.checkpoint_path, 'histories_' + opt.id + format(int(save_id), '04') + '.pkl'), 'wb') as f: cPickle.dump(histories, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): # Deal with feature things before anything opt.use_fc, opt.use_att = utils.if_use_feat(opt.caption_model) if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5 acc_steps = getattr(opt, 'acc_steps', 1) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl'), 'rb') as f: infos = utils.pickle_load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl'), 'rb') as f: histories = utils.pickle_load(f) else: infos['iter'] = 0 infos['epoch'] = 0 infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['vocab'] = loader.get_vocab() infos['opt'] = opt iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) opt.vocab = loader.get_vocab() model = models.setup(opt) model = load_para(model, os.path.join('./log/log_aoanet_rl', 'model.pth')) if True: del opt.vocab dp_model = model lw_model = LossWrapper(model, opt) dp_lw_model = torch.nn.DataParallel(lw_model) epoch_done = True # Assure in training mode dp_lw_model.train() else: model = model.cuda() del opt.vocab dp_model = torch.nn.DataParallel(model) lw_model = LossWrapper(model, opt) dp_lw_model = torch.nn.DataParallel(lw_model) epoch_done = True # Assure in training mode dp_lw_model.train() if opt.noamopt: assert opt.caption_model in [ 'transformer', 'aoa' ], 'noamopt can only work with transformer' optimizer = utils.get_std_opt(model, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup) optimizer._step = iteration elif opt.reduce_on_plateau: optimizer = utils.build_optimizer(model.parameters(), opt) optimizer = utils.ReduceLROnPlateau(optimizer, factor=0.5, patience=3) else: optimizer = utils.build_optimizer(model.parameters(), opt) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) def save_checkpoint(model, infos, optimizer, histories=None, append=''): if len(append) > 0: append = '-' + append # if checkpoint_path doesn't exist if not os.path.isdir(opt.checkpoint_path): os.makedirs(opt.checkpoint_path) checkpoint_path = os.path.join(opt.checkpoint_path, 'model%s.pth' % (append)) torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer%s.pth' % (append)) torch.save(optimizer.state_dict(), optimizer_path) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '%s.pkl' % (append)), 'wb') as f: utils.pickle_dump(infos, f) if histories: with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '%s.pkl' % (append)), 'wb') as f: utils.pickle_dump(histories, f) try: while True: if epoch_done: if not opt.noamopt and not opt.reduce_on_plateau: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # set the decayed rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min( opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False epoch_done = False start = time.time() if (opt.use_warmup == 1) and (iteration < opt.noamopt_warmup): opt.current_lr = opt.learning_rate * (iteration + 1) / opt.noamopt_warmup utils.set_lr(optimizer, opt.current_lr) # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) if (iteration % acc_steps == 0): optimizer.zero_grad() torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] tmp = [_ if _ is None else _.cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp model_out = dp_lw_model(fc_feats, att_feats, labels, masks, att_masks, data['gts'], torch.arange(0, len(data['gts'])), sc_flag) loss = model_out['loss'].mean() loss_sp = loss / acc_steps loss_sp.backward() if ((iteration + 1) % acc_steps == 0): utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() torch.cuda.synchronize() train_loss = loss.item() end = time.time() if not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) else: print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, model_out['reward'].mean(), end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 epoch_done = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) if opt.noamopt: opt.current_lr = optimizer.rate() elif opt.reduce_on_plateau: opt.current_lr = optimizer.current_lr add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', model_out['reward'].mean(), iteration) loss_history[ iteration] = train_loss if not sc_flag else model_out[ 'reward'].mean() lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # update infos infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = { 'split': 'train', 'dataset': opt.input_json, 'num_images': 1 } eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( dp_model, lw_model.crit, loader, eval_kwargs) if opt.reduce_on_plateau: if lang_stats is not None and 'CIDEr' in lang_stats: optimizer.scheduler_step(-lang_stats['CIDEr']) else: optimizer.scheduler_step(val_loss) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True # Dump miscalleous informations infos['best_val_score'] = best_val_score histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history save_checkpoint(model, infos, optimizer, histories) if opt.save_history_ckpt: save_checkpoint(model, infos, optimizer, append=str(iteration)) if best_flag: save_checkpoint(model, infos, optimizer, append='best') # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break except (RuntimeError, KeyboardInterrupt): print('Save ckpt on exception ...') save_checkpoint(model, infos, optimizer) print('Save ckpt done.') stack_trace = traceback.format_exc() print(stack_trace)
def train(sketch_dataloader, shape_dataloader, model, criterion, optimizer, epoch, opt): """ train for one epoch on the training set """ batch_time = utils.AverageMeter() losses = utils.AverageMeter() top1 = utils.AverageMeter() tpl_losses = utils.AverageMeter() # training mode net_whole, net_bp, net_vp, net_ap, net_cls = model optim_sketch, optim_shape, optim_centers = optimizer crt_cls, crt_tlc, w1, w2 = criterion net_whole.train() net_bp.train() net_vp.train() net_ap.train() net_cls.train() end = time.time() # debug_here() for i, ((sketches, k_labels), (shapes, p_labels)) in enumerate(zip(sketch_dataloader, shape_dataloader)): shapes = shapes.view(shapes.size(0)*shapes.size(1), shapes.size(2), shapes.size(3), shapes.size(4)) # expanding: (bz * 12) x 3 x 224 x 224 shapes = shapes.expand(shapes.size(0), 3, shapes.size(2), shapes.size(3)) shapes_v = Variable(shapes.cuda()) p_labels_v = Variable(p_labels.long().cuda()) sketches_v = Variable(sketches.cuda()) k_labels_v = Variable(k_labels.long().cuda()) o_bp = net_bp(shapes_v) o_vp = net_vp(o_bp) shape_feat = net_ap(o_vp) sketch_feat = net_whole(sketches_v) feat = torch.cat([shape_feat, sketch_feat]) target = torch.cat([p_labels_v, k_labels_v]) score = net_cls(feat) cls_loss = crt_cls(score, target) tpl_loss, _ = crt_tlc(score, target) # tpl_loss, _ = crt_tlc(feat, target) loss = w1 * cls_loss + w2 * tpl_loss ## measure accuracy prec1 = utils.accuracy(score.data, target.data, topk=(1,))[0] losses.update(cls_loss.data[0], score.size(0)) # batchsize tpl_losses.update(tpl_loss.data[0], score.size(0)) top1.update(prec1[0], score.size(0)) ## backward optim_sketch.zero_grad() optim_shape.zero_grad() optim_centers.zero_grad() loss.backward() utils.clip_gradient(optim_sketch, opt.gradient_clip) utils.clip_gradient(optim_shape, opt.gradient_clip) utils.clip_gradient(optim_centers, opt.gradient_clip) optim_sketch.step() optim_shape.step() optim_centers.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % opt.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Trploss {triplet.val:.4f}({triplet.avg:.3f})'.format( epoch, i, len(sketch_dataloader), batch_time=batch_time, loss=losses, top1=top1, triplet=tpl_losses)) # print('triplet loss: ', tpl_center_loss.data[0]) print(' * Train Prec@1 {top1.avg:.3f}'.format(top1=top1)) return top1.avg
def train(opt): opt.use_att = utils.if_use_att(opt) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tf_summary_writer = tf and SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) best_val_score_vse = infos.get('best_val_score_vse', None) model = models.JointModel(opt) model.cuda() update_lr_flag = True # Assure in training mode model.train() optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad], lr=opt.learning_rate, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, 'optimizer.pth')): state_dict = torch.load(os.path.join(opt.start_from, 'optimizer.pth')) if len(state_dict['state']) == len(optimizer.state_dict()['state']): optimizer.load_state_dict(state_dict) else: print( 'Optimizer param group number not matched? There must be new parameters. Reinit the optimizer.' ) init_scorer(opt.cached_tokens) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.caption_generator.ss_prob = opt.ss_prob # Assign retrieval loss weight if epoch > opt.retrieval_reward_weight_decay_start and opt.retrieval_reward_weight_decay_start >= 0: frac = (epoch - opt.retrieval_reward_weight_decay_start ) // opt.retrieval_reward_weight_decay_every model.retrieval_reward_weight = opt.retrieval_reward_weight * ( opt.retrieval_reward_weight_decay_rate**frac) update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['att_masks'], data['labels'], data['masks'] ] tmp = utils.var_wrapper(tmp) fc_feats, att_feats, att_masks, labels, masks = tmp optimizer.zero_grad() loss = model(fc_feats, att_feats, att_masks, labels, masks, data) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) prt_str = "" for k, v in model.loss().items(): prt_str += "{} = {:.3f} ".format(k, v) print(prt_str) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if tf is not None: tf_summary_writer.add_scalar('train_loss', train_loss, iteration) for k, v in model.loss().items(): tf_summary_writer.add_scalar(k, v, iteration) tf_summary_writer.add_scalar('learning_rate', opt.current_lr, iteration) tf_summary_writer.add_scalar('scheduled_sampling_prob', model.caption_generator.ss_prob, iteration) tf_summary_writer.add_scalar('retrieval_reward_weight', model.retrieval_reward_weight, iteration) tf_summary_writer.file_writer.flush() loss_history[iteration] = train_loss lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.caption_generator.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) # Load the retrieval model for evaluation val_loss, predictions, lang_stats = eval_utils.eval_split( model, loader, eval_kwargs) # Write validation result into summary if tf is not None: for k, v in val_loss.items(): tf_summary_writer.add_scalar('validation ' + k, v, iteration) for k, v in lang_stats.items(): tf_summary_writer.add_scalar(k, v, iteration) tf_summary_writer.add_text( 'Captions', '.\n\n'.join([_['caption'] for _ in predictions[:100]]), iteration) #tf_summary_writer.add_image('images', utils.make_summary_image(), iteration) #utils.make_html(opt.id, iteration) tf_summary_writer.file_writer.flush() val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['SPICE'] * 100 else: current_score = -val_loss['loss_cap'] current_score_vse = val_loss.get(opt.vse_eval_criterion, 0) * 100 best_flag = False best_flag_vse = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True if best_val_score_vse is None or current_score_vse > best_val_score_vse: best_val_score_vse = current_score_vse best_flag_vse = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) checkpoint_path = os.path.join(opt.checkpoint_path, 'model-%d.pth' % (iteration)) torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['best_val_score_vse'] = best_val_score_vse infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join( opt.checkpoint_path, 'infos_' + opt.id + '-%d.pkl' % (iteration)), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) if best_flag_vse: checkpoint_path = os.path.join(opt.checkpoint_path, 'model_vse-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_vse_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): # Deal with feature things before anything opt.use_att = utils.if_use_att(opt.caption_model) if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5 loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tb_summary_writer = tb and tb.SummaryWriter(log_dir=opt.checkpoint_path) print(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible print(os.getcwd()) with open( os.path.join(os.getcwd(), opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt).cuda() # dp_model = torch.nn.DataParallel(model) dp_model = model update_lr_flag = True # Assure in training mode dp_model.train() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer = utils.build_optimizer(model.parameters(), opt) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: # # [added] reproduce straight line learning rate decay in supplementary # # ---- the original paper used 60k iters # # ---- if lr goes to zero just stay at the last lr # linear_lr = -(iteration+1)*opt.learning_rate/60000 + opt.learning_rate # if linear_lr <= 0: # pass # else: # opt.current_lr = linear_lr # utils.set_lr(optimizer, opt.current_lr) if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False update_lr_flag = False start = time.time() # Load data from train split (0) # [naxin] knn_data is the nearest neighbour batch, the format is identical to data data, knn_data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] # tmp = [knn_data['fc_feats'], knn_data['att_feats'], knn_data['labels'], knn_data['masks'], knn_data['att_masks']] tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp optimizer.zero_grad() if not sc_flag: loss = crit(dp_model(fc_feats, att_feats, labels, att_masks), labels[:, 1:], masks[:, 1:]) else: gen_result, sample_logprobs = dp_model(fc_feats, att_feats, att_masks, opt={'sample_max': 0}, mode='sample') reward = get_self_critical_reward(dp_model, fc_feats, att_feats, att_masks, data, gen_result, opt) loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda()) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.item() torch.cuda.synchronize() end = time.time() if not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) else: print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(reward[:,0]), end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration) loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( dp_model, crit, loader, eval_kwargs, eval_knn=opt.use_knn) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(loader, model, crit, optimizer, lr_scheduler, opt, rl_crit=None): model.train() if torch.cuda.device_count() > 1: print("{} devices detected, switch to parallel model.".format( torch.cuda.device_count())) model = nn.DataParallel(model) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) for epoch in range(opt["epochs"]): lr_scheduler.step() iteration = 0 # If start self crit training if opt["self_crit_after"] != -1 and epoch >= opt["self_crit_after"]: sc_flag = True init_cider_scorer(opt["cached_tokens"]) else: sc_flag = False for data in loader: torch.cuda.synchronize() fc_feats = data['fc_feats'].to(device) labels = data['labels'].to(device) masks = data['masks'].to(device) if not sc_flag: seq_probs, _ = model(fc_feats, labels, 'train') loss = crit(seq_probs, labels[:, 1:], masks[:, 1:]) else: seq_probs, seq_preds = model(fc_feats, mode='inference', opt=opt) reward = get_self_critical_reward(model, fc_feats, data, seq_preds) print(reward.shape) loss = rl_crit( seq_probs, seq_preds, Variable(torch.from_numpy(reward).float().cuda())) optimizer.zero_grad() loss.backward() utils.clip_gradient(optimizer, opt["grad_clip"]) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() iteration += 1 if not sc_flag: print("iter %d (epoch %d), train_loss = %.6f" % (iteration, epoch, train_loss)) else: print("iter %d (epoch %d), avg_reward = %.6f" % (iteration, epoch, np.mean(reward[:, 0]))) if epoch != 0 and epoch % opt["save_checkpoint_every"] == 0: model_path = os.path.join(opt["checkpoint_path"], 'model_%d.pth' % (epoch)) model_info_path = os.path.join(opt["checkpoint_path"], 'model_score.txt') torch.save(model.state_dict(), model_path) print("model saved to %s" % (model_path)) with open(model_info_path, 'a') as f: f.write("model_%d, loss: %.6f\n" % (epoch, train_loss))
def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tf_summary_writer = tf and tf.summary.FileWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size1", "rnn_size2", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) # loader.iterators = infos.get('iterators', loader.iterators) # loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt) model.cuda() update_lr_flag = True # Assure in training mode model.train() # model.set_mode('train') crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: model.train() if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_cider_scorer(opt.cached_tokens) else: sc_flag = False update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch('train+val') # print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['num_bbox'], data['labels'], data['masks'] ] tmp = [ Variable(torch.from_numpy(_).float(), requires_grad=False).cuda() for _ in tmp ] fc_feats, att_feats, num_bbox, labels, masks = tmp labels = labels.long() optimizer.zero_grad() if not sc_flag: loss = crit(model(fc_feats, att_feats, num_bbox, labels), labels[:, 1:], masks[:, 1:]) # loss = crit(model(fc_feats, att_feats, labels), labels[:,1:], masks[:,1:]) else: gen_result, sample_logprobs = model.sample(fc_feats, att_feats, num_bbox, {'sample_max': 0}) reward = get_self_critical_reward(model, fc_feats, att_feats, num_bbox, data, gen_result) loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(reward).float().cuda(), requires_grad=False)) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() if not sc_flag: if (iteration % 100 == 0): print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f} lr={}" \ .format(iteration, epoch, train_loss, end - start, opt.current_lr )) else: if (iteration % 100 == 0): print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f} lr={}" \ .format(iteration, epoch, np.mean(reward[:,0]), end - start, opt.current_lr )) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if tf is not None: add_summary_value(tf_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tf_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tf_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tf_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration) tf_summary_writer.flush() loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = { 'split': 'val', 'dataset': opt.input_json, 'val_ref_path': opt.val_ref_path, 'raw_val_anno_path': opt.raw_val_anno_path } eval_kwargs.update(vars(opt)) # predictions, lang_stats = eval_utils.eval_split(model, crit, loader, eval_kwargs) best_flag = False if True: # if true # if best_val_score is None or current_score > best_val_score: # best_val_score = current_score # best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
if torch.cuda.is_available(): optimizer.zero_grad() dt = {key: _.cuda() if isinstance(_, torch.Tensor) else _ for key, _ in dt.items()} # 这写法有点秀 dt = collections.defaultdict(lambda: None, dt) if True: train_mode = 'train_rl' if sc_flag else 'train' # train_rl是以强化学习的方式进行训练 loss, sample_score, greedy_score = model(dt, mode=train_mode, loader=train_loader) loss_sum[0] = loss_sum[0] + loss.item() # store loss loss_sum[1] = loss_sum[1] + sample_score.mean().item() # store sample_score loss_sum[2] = loss_sum[2] + greedy_score.mean().item() # store greedy_score loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if torch.cuda.is_available(): torch.cuda.synchronize() losses_log_every = int(len(train_loader) / 5) ######## 记录loss log ######### if iteration % losses_log_every == 0: end = time.time() losses = np.round(loss_sum / losses_log_every, 3) logger.info( "ID {} iter {} (epoch {}, lr {}), avg_iter_loss = {}, time/iter = {:.3f}, bad_vid = {:.3f}" .format(opt.id, iteration, epoch, opt.current_lr, losses, (end - start) / losses_log_every, bad_video_num))
def train(opt): set_seed(opt.seed) save_folder = build_floder(opt) logger = create_logger(save_folder, 'train.log') tf_writer = SummaryWriter(os.path.join(save_folder, 'tf_summary')) if not opt.start_from: backup_envir(save_folder) logger.info('backup evironment completed !') saved_info = {'best': {}, 'last': {}, 'history': {}, 'eval_history': {}} # continue training if opt.start_from: opt.pretrain = False infos_path = os.path.join(save_folder, 'info.json') with open(infos_path) as f: logger.info('Load info from {}'.format(infos_path)) saved_info = json.load(f) prev_opt = saved_info[opt.start_from_mode[:4]]['opt'] exclude_opt = ['start_from', 'start_from_mode', 'pretrain'] for opt_name in prev_opt.keys(): if opt_name not in exclude_opt: vars(opt).update({opt_name: prev_opt.get(opt_name)}) if prev_opt.get(opt_name) != vars(opt).get(opt_name): logger.info('Change opt {} : {} --> {}'.format(opt_name, prev_opt.get(opt_name), vars(opt).get(opt_name))) opt.feature_dim = opt.raw_feature_dim train_dataset = PropSeqDataset(opt.train_caption_file, opt.visual_feature_folder, opt.dict_file, True, opt.train_proposal_type, logger, opt) val_dataset = PropSeqDataset(opt.val_caption_file, opt.visual_feature_folder, opt.dict_file, False, 'gt', logger, opt) train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.nthreads, collate_fn=collate_fn) val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.nthreads, collate_fn=collate_fn) epoch = saved_info[opt.start_from_mode[:4]].get('epoch', 0) iteration = saved_info[opt.start_from_mode[:4]].get('iter', 0) best_val_score = saved_info[opt.start_from_mode[:4]].get('best_val_score', -1e5) val_result_history = saved_info['history'].get('val_result_history', {}) loss_history = saved_info['history'].get('loss_history', {}) lr_history = saved_info['history'].get('lr_history', {}) opt.current_lr = vars(opt).get('current_lr', opt.lr) opt.vocab_size = train_loader.dataset.vocab_size # Build model model = EncoderDecoder(opt) model.train() # Recover the parameters if opt.start_from and (not opt.pretrain): if opt.start_from_mode == 'best': model_pth = torch.load(os.path.join(save_folder, 'model-best-CE.pth')) elif opt.start_from_mode == 'best-RL': model_pth = torch.load(os.path.join(save_folder, 'model-best-RL.pth')) elif opt.start_from_mode == 'last': model_pth = torch.load(os.path.join(save_folder, 'model-last.pth')) logger.info('Loading pth from {}, iteration:{}'.format(save_folder, iteration)) model.load_state_dict(model_pth['model']) # Load the pre-trained model if opt.pretrain and (not opt.start_from): logger.info('Load pre-trained parameters from {}'.format(opt.pretrain_path)) if torch.cuda.is_available(): model_pth = torch.load(opt.pretrain_path) else: model_pth = torch.load(opt.pretrain_path, map_location=torch.device('cpu')) model.load_state_dict(model_pth['model']) if torch.cuda.is_available(): model.cuda() if opt.optimizer_type == 'adam': optimizer = optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) else: optimizer = optim.SGD(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) if opt.start_from: optimizer.load_state_dict(model_pth['optimizer']) # print the args for debugging print_opt(opt, model, logger) print_alert_message('Strat training !', logger) loss_sum = np.zeros(3) bad_video_num = 0 start = time.time() # Epoch-level iteration while True: if True: # lr decay if epoch > opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate ** frac opt.current_lr = opt.lr * decay_factor else: opt.current_lr = opt.lr utils.set_lr(optimizer, opt.current_lr) # scheduled sampling rate update if epoch > opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.basic_ss_prob + opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.caption_decoder.ss_prob = opt.ss_prob # self critical learning flag if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer() model.caption_decoder.ss_prob = 0 else: sc_flag = False # Batch-level iteration for dt in tqdm(train_loader): if torch.cuda.is_available(): torch.cuda.synchronize() if opt.debug: # each epoch contains less mini-batches for debugging if (iteration + 1) % 5 == 0: iteration += 1 break elif epoch == 0: break iteration += 1 if torch.cuda.is_available(): optimizer.zero_grad() dt = {key: _.cuda() if isinstance(_, torch.Tensor) else _ for key, _ in dt.items()} dt = collections.defaultdict(lambda: None, dt) if True: train_mode = 'train_rl' if sc_flag else 'train' loss, sample_score, greedy_score = model(dt, mode=train_mode, loader=train_loader) loss_sum[0] = loss_sum[0] + loss.item() loss_sum[1] = loss_sum[1] + sample_score.mean().item() loss_sum[2] = loss_sum[2] + greedy_score.mean().item() loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if torch.cuda.is_available(): torch.cuda.synchronize() losses_log_every = int(len(train_loader) / 5) if iteration % losses_log_every == 0: end = time.time() losses = np.round(loss_sum / losses_log_every, 3) logger.info( "ID {} iter {} (epoch {}, lr {}), avg_iter_loss = {}, time/iter = {:.3f}, bad_vid = {:.3f}" .format(opt.id, iteration, epoch, opt.current_lr, losses, (end - start) / losses_log_every, bad_video_num)) tf_writer.add_scalar('lr', opt.current_lr, iteration) tf_writer.add_scalar('ss_prob', model.caption_decoder.ss_prob, iteration) tf_writer.add_scalar('train_caption_loss', losses[0].item(), iteration) tf_writer.add_scalar('train_rl_sample_score', losses[1].item(), iteration) tf_writer.add_scalar('train_rl_greedy_score', losses[2].item(), iteration) loss_history[iteration] = losses.tolist() lr_history[iteration] = opt.current_lr loss_sum = 0 * loss_sum start = time.time() bad_video_num = 0 torch.cuda.empty_cache() # evaluation if (epoch % opt.save_checkpoint_every == 0) and (epoch >= opt.min_epoch_when_save) and (epoch != 0): model.eval() dvc_json_path = os.path.join(save_folder, 'prediction', 'num{}_epoch{}_score{}_nms{}_top{}.json'.format( len(val_dataset), epoch, opt.eval_score_threshold, opt.eval_nms_threshold, opt.eval_top_n)) eval_score = evaluate(model, val_loader, dvc_json_path, './data/captiondata/val_1_for_tap.json', opt.eval_score_threshold, opt.eval_nms_threshold, opt.eval_top_n, logger=logger) current_score = np.array(eval_score['METEOR']).mean() # add to tf summary for key in eval_score.keys(): tf_writer.add_scalar(key, np.array(eval_score[key]).mean(), iteration) _ = [item.append(np.array(item).mean()) for item in eval_score.values() if isinstance(item, list)] print_info = '\n'.join([key + ":" + str(eval_score[key]) for key in eval_score.keys()]) logger.info('\nValidation results of iter {}:\n'.format(iteration) + print_info) # for name, param in model.named_parameters(): # tf_writer.add_histogram(name, param.clone().cpu().data.numpy(), iteration, bins=10) # if param.grad is not None: # tf_writer.add_histogram(name + '_grad', param.grad.clone().cpu().data.numpy(), iteration, # bins=10) val_result_history[epoch] = {'eval_score': eval_score} # Save model saved_pth = {'epoch': epoch, 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), } if opt.save_all_checkpoint: checkpoint_path = os.path.join(save_folder, 'model_iter_{}.pth'.format(iteration)) else: checkpoint_path = os.path.join(save_folder, 'model-last.pth') torch.save(saved_pth, checkpoint_path) logger.info('Save model at iter {} to {}.'.format(iteration, checkpoint_path)) # save the model parameter and of best epoch if current_score > best_val_score: best_val_score = current_score best_epoch = epoch saved_info['best'] = {'opt': vars(opt), 'iter': iteration, 'epoch': best_epoch, 'best_val_score': best_val_score, 'dvc_json_path': dvc_json_path, 'METEOR': eval_score['METEOR'], 'avg_proposal_num': eval_score['avg_proposal_number'], 'Precision': eval_score['Precision'], 'Recall': eval_score['Recall'] } suffix = "RL" if sc_flag else "CE" torch.save(saved_pth, os.path.join(save_folder, 'model-best-{}.pth'.format(suffix))) logger.info('Save Best-model at iter {} to checkpoint file.'.format(iteration)) saved_info['last'] = {'opt': vars(opt), 'iter': iteration, 'epoch': epoch, 'best_val_score': best_val_score, } saved_info['history'] = {'val_result_history': val_result_history, 'loss_history': loss_history, 'lr_history': lr_history, } with open(os.path.join(save_folder, 'info.json'), 'w') as f: json.dump(saved_info, f) logger.info('Save info to info.json') model.train() epoch += 1 torch.cuda.empty_cache() # Stop criterion if epoch >= opt.epoch: tf_writer.close() break return saved_info
def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tf_summary_writer = tf and tf.summary.FileWriter(opt.checkpoint_path) # log information folder_id='log_result' file_id='show_tell' log_file_name=os.path.join(folder_id,file_id + '.txt') log_file=open(log_file_name,'w') infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_'+opt.id+'.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same=["caption_model", "rnn_type", "rnn_size", "num_layers"] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')): with open(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt) model.cuda() update_lr_flag = True # Assure in training mode model.train() crit = utils.LanguageModelCriterion() # define the loss criterion optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None: optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate ** frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks']] tmp = [Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp] fc_feats, att_feats, labels, masks = tmp optimizer.zero_grad() loss = crit(model(fc_feats, att_feats, labels), labels[:,1:], masks[:,1:]) # compute using the defined criterion loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() # store the relevant values train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) print((time.time(),time.clock())) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 if epoch == 25: checkpoint_path = os.path.join(opt.checkpoint_path, 'model_25_epochs_512_batch.pth') torch.save(model.state_dict(), checkpoint_path) elif epoch == 12: checkpoint_path = os.path.join(opt.checkpoint_path, 'model_12_epochs_64_batch.pth') torch.save(model.state_dict(), checkpoint_path) elif epoch == 75: checkpoint_path = os.path.join(opt.checkpoint_path, 'model_75_epochs_512_batch.pth') torch.save(model.state_dict(), checkpoint_path) elif epoch == 100: checkpoint_path = os.path.join(opt.checkpoint_path, 'model_100_epochs_512_batch.pth') torch.save(model.state_dict(), checkpoint_path) update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if tf is not None: add_summary_value(tf_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tf_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tf_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) tf_summary_writer.flush() loss_history[iteration] = train_loss lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob log_line = 'Epoch [%d], Step [%d], loss: %f, time %f' % ( epoch,iteration, train_loss,time.clock() ) log_file.write(log_line + '\n') # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split(model, crit, loader, eval_kwargs) # Write validation result into summary if tf is not None: add_summary_value(tf_summary_writer, 'validation loss', val_loss, iteration) for k,v in lang_stats.items(): add_summary_value(tf_summary_writer, k, v, iteration) tf_summary_writer.flush() val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions} # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = - val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'.pkl'), 'wb') as f: cPickle.dump(infos, f) with open(os.path.join(opt.checkpoint_path, 'histories_'+opt.id+'.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tf_summary_writer = tf and tf.summary.FileWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_'+opt.id+'.pkl'),'rb') as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same=["caption_model", "rnn_type", "rnn_size", "num_layers"] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')): with open(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl'),'rb') as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt) model.cuda() if opt.multi_gpu: model=nn.DataParallel(model) update_lr_flag = True # Assure in training mode model.train() crit = utils.LanguageModelCriterion() optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay) # Load the optimizer if vars(opt).get('start_from', None) is not None: optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate ** frac opt.current_lr = opt.learning_rate * decay_factor utils.set_lr(optimizer, opt.current_lr) # set the decayed rate else: opt.current_lr = opt.learning_rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks']] tmp = [Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp] fc_feats, att_feats, labels, masks = tmp optimizer.zero_grad() loss = crit(model(fc_feats, att_feats, labels), labels[:,1:], masks[:,1:]) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() end = time.time() print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): if tf is not None: add_summary_value(tf_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tf_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tf_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) tf_summary_writer.flush() loss_history[iteration] = train_loss lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split(model, crit, loader, eval_kwargs) # Write validation result into summary if tf is not None: add_summary_value(tf_summary_writer, 'validation loss', val_loss, iteration) for k,v in lang_stats.items(): add_summary_value(tf_summary_writer, k, v, iteration) tf_summary_writer.flush() val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions} # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = - val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'.pkl'), 'wb') as f: cPickle.dump(infos, f) with open(os.path.join(opt.checkpoint_path, 'histories_'+opt.id+'.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): # Deal with feature things before anything opt.use_fc, opt.use_att = utils.if_use_feat(opt.caption_model) if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5 loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path) infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl'), 'rb') as f: infos = utils.pickle_load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl'), 'rb') as f: histories = utils.pickle_load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt).cuda() dp_model = torch.nn.DataParallel(model) epoch_done = True # Assure in training mode dp_model.train() if opt.label_smoothing > 0: crit = utils.LabelSmoothing(smoothing=opt.label_smoothing) else: crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() if opt.noamopt: assert opt.caption_model == 'transformer', 'noamopt can only work with transformer' optimizer = utils.get_std_opt(model, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup) optimizer._step = iteration elif opt.reduce_on_plateau: optimizer = utils.build_optimizer(model.parameters(), opt) optimizer = utils.ReduceLROnPlateau(optimizer, factor=0.5, patience=3) else: optimizer = utils.build_optimizer(model.parameters(), opt) # Load the optimizer if vars(opt).get('start_from', None) is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) total_loss = 0 times = 0 while True: if epoch_done: if not opt.noamopt and not opt.reduce_on_plateau: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # set the decayed rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False epoch_done = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp times += 1 optimizer.zero_grad() if not sc_flag: loss = crit(dp_model(fc_feats, att_feats, labels, att_masks), labels[:, 1:], masks[:, 1:]) else: gen_result, sample_logprobs = dp_model(fc_feats, att_feats, att_masks, opt={'sample_max': 0}, mode='sample') reward = get_self_critical_reward(dp_model, fc_feats, att_feats, att_masks, data, gen_result, opt) loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda()) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.item() total_loss = total_loss + train_loss torch.cuda.synchronize() end = time.time() if not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) else: print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, np.mean(reward[:,0]), end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: # epoch += 1 epoch_done = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) if opt.noamopt: opt.current_lr = optimizer.rate() elif opt.reduce_on_plateau: opt.current_lr = optimizer.current_lr add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration) loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model # if (iteration % opt.save_checkpoint_every == 0): if data['bounds']['wrapped']: epoch += 1 # eval model eval_kwargs = { 'split': 'val', 'dataset': opt.input_json, 'verbose': False } eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( dp_model, crit, loader, eval_kwargs) if opt.reduce_on_plateau: if 'CIDEr' in lang_stats: optimizer.scheduler_step(-lang_stats['CIDEr']) else: optimizer.scheduler_step(val_loss) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats f = open('train_log_%s.txt' % opt.id, 'a') f.write( 'Epoch {}: | Date: {} | TrainLoss: {} | ValLoss: {} | Score: {}' .format(epoch, str(datetime.now()), str(total_loss / times), str(val_loss), str(current_score))) f.write('\n') f.close() print('-------------------wrote to log file') total_loss = 0 times = 0 current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if True: # if true if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True if not os.path.isdir(opt.checkpoint_path): os.mkdir(opt.checkpoint_path) checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) # print(str(infos['best_val_score'])) print("model saved to {}".format(checkpoint_path)) if opt.save_history_ckpt: checkpoint_path = os.path.join( opt.checkpoint_path, 'model-%d.pth' % (iteration)) torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '.pkl'), 'wb') as f: utils.pickle_dump(infos, f) if opt.save_history_ckpt: with open( os.path.join( opt.checkpoint_path, 'infos_' + opt.id + '-%d.pkl' % (iteration)), 'wb') as f: cPickle.dump(infos, f) with open( os.path.join(opt.checkpoint_path, 'histories_' + opt.id + '.pkl'), 'wb') as f: utils.pickle_dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos_' + opt.id + '-best.pkl'), 'wb') as f: utils.pickle_dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(train_loader, model, criterion, optimizer, epoch, opt): """ train for one epoch on the training set """ batch_time = utils.AverageMeter() losses = utils.AverageMeter() top1 = utils.AverageMeter() # training mode model.train() end = time.time() for i, (input_points, labels) in enumerate(train_loader): # bz x 2048 x 3 input_points = Variable(input_points) input_points = input_points.transpose(2, 1) labels = Variable(labels[:, 0]) # print(points.size()) # print(labels.size()) # shift data to GPU if opt.cuda: input_points = input_points.cuda() labels = labels.long().cuda() # must be long cuda tensor # forward, backward optimize output, _ = model(input_points) # debug_here() loss = criterion(output, labels) ############################## # measure accuracy ############################## prec1 = utils.accuracy(output.data, labels.data, topk=(1, ))[0] losses.update(loss.data[0], input_points.size(0)) top1.update(prec1[0], input_points.size(0)) ############################## # compute gradient and do sgd ############################## optimizer.zero_grad() loss.backward() ############################## # gradient clip stuff ############################## utils.clip_gradient(optimizer, opt.gradient_clip) optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % opt.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, loss=losses, top1=top1))
def train(opt): exclude_opt = [ 'training_mode', 'tap_epochs', 'cg_epochs', 'tapcg_epochs', 'lr', 'learning_rate_decay_start', 'learning_rate_decay_every', 'learning_rate_decay_rate', 'self_critical_after', 'save_checkpoint_every', 'id', "pretrain", "pretrain_path", "debug", "save_all_checkpoint", "min_epoch_when_save" ] save_folder, logger, tf_writer = build_floder_and_create_logger(opt) saved_info = {'best': {}, 'last': {}, 'history': {}} is_continue = opt.start_from != None if is_continue: infos_path = os.path.join(save_folder, 'info.pkl') with open(infos_path) as f: logger.info('load info from {}'.format(infos_path)) saved_info = cPickle.load(f) pre_opt = saved_info[opt.start_from_mode]['opt'] if vars(opt).get("no_exclude_opt", False): exclude_opt = [] for opt_name in vars(pre_opt).keys(): if (not opt_name in exclude_opt): vars(opt).update({opt_name: vars(pre_opt).get(opt_name)}) if vars(pre_opt).get(opt_name) != vars(opt).get(opt_name): print('change opt: {} from {} to {}'.format( opt_name, vars(pre_opt).get(opt_name), vars(opt).get(opt_name))) opt.use_att = utils.if_use_att(opt.caption_model) loader = DataLoader(opt) opt.CG_vocab_size = loader.vocab_size opt.CG_seq_length = loader.seq_length # init training option epoch = saved_info[opt.start_from_mode].get('epoch', 0) iteration = saved_info[opt.start_from_mode].get('iter', 0) best_val_score = saved_info[opt.start_from_mode].get('best_val_score', 0) val_result_history = saved_info['history'].get('val_result_history', {}) loss_history = saved_info['history'].get('loss_history', {}) lr_history = saved_info['history'].get('lr_history', {}) loader.iterators = saved_info[opt.start_from_mode].get( 'iterators', loader.iterators) loader.split_ix = saved_info[opt.start_from_mode].get( 'split_ix', loader.split_ix) opt.current_lr = vars(opt).get('current_lr', opt.lr) opt.m_batch = vars(opt).get('m_batch', 1) # create a tap_model,fusion_model,cg_model tap_model = models.setup_tap(opt) lm_model = CaptionGenerator(opt) cg_model = lm_model if is_continue: if opt.start_from_mode == 'best': model_pth = torch.load(os.path.join(save_folder, 'model-best.pth')) elif opt.start_from_mode == 'last': model_pth = torch.load( os.path.join(save_folder, 'model_iter_{}.pth'.format(iteration))) assert model_pth['iteration'] == iteration logger.info('Loading pth from {}, iteration:{}'.format( save_folder, iteration)) tap_model.load_state_dict(model_pth['tap_model']) cg_model.load_state_dict(model_pth['cg_model']) elif opt.pretrain: print('pretrain {} from {}'.format(opt.pretrain, opt.pretrain_path)) model_pth = torch.load(opt.pretrain_path) if opt.pretrain == 'tap': tap_model.load_state_dict(model_pth['tap_model']) elif opt.pretrain == 'cg': cg_model.load_state_dict(model_pth['cg_model']) elif opt.pretrain == 'tap_cg': tap_model.load_state_dict(model_pth['tap_model']) cg_model.load_state_dict(model_pth['cg_model']) else: assert 1 == 0, 'opt.pretrain error' tap_model.cuda() tap_model.train() # Assure in training mode tap_crit = utils.TAPModelCriterion() tap_optimizer = optim.Adam(tap_model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) cg_model.cuda() cg_model.train() cg_optimizer = optim.Adam(cg_model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) cg_crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() cg_optimizer = optim.Adam(cg_model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) allmodels = [tap_model, cg_model] optimizers = [tap_optimizer, cg_optimizer] if is_continue: tap_optimizer.load_state_dict(model_pth['tap_optimizer']) cg_optimizer.load_state_dict(model_pth['cg_optimizer']) update_lr_flag = True loss_sum = np.zeros(5) bad_video_num = 0 best_epoch = epoch start = time.time() print_opt(opt, allmodels, logger) logger.info('\nStart training') # set a var to indicate what to train in current iteration: "tap", "cg" or "tap_cg" flag_training_whats = get_training_list(opt, logger) # Iteration begin while True: if update_lr_flag: if (epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0): frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.lr * decay_factor else: opt.current_lr = opt.lr for optimizer in optimizers: utils.set_lr(optimizer, opt.current_lr) if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(None) else: sc_flag = False update_lr_flag = False flag_training_what = flag_training_whats[epoch] if opt.training_mode == "alter2": flag_training_what = flag_training_whats[iteration] # get data data = loader.get_batch('train') if opt.debug: print('vid:', data['vid']) print('info:', data['infos']) torch.cuda.synchronize() if (data["proposal_num"] <= 0) or (data['fc_feats'].shape[0] <= 1): bad_video_num += 1 # print('vid:{} has no good proposal.'.format(data['vid'])) continue ind_select_list, soi_select_list, cg_select_list, sampled_ids, = data[ 'ind_select_list'], data['soi_select_list'], data[ 'cg_select_list'], data['sampled_ids'] if flag_training_what == 'cg' or flag_training_what == 'gt_tap_cg': ind_select_list = data['gts_ind_select_list'] soi_select_list = data['gts_soi_select_list'] cg_select_list = data['gts_cg_select_list'] tmp = [ data['fc_feats'], data['att_feats'], data['lda_feats'], data['tap_labels'], data['tap_masks_for_loss'], data['cg_labels'][cg_select_list], data['cg_masks'][cg_select_list], data['w1'] ] tmp = [ Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp ] c3d_feats, att_feats, lda_feats, tap_labels, tap_masks_for_loss, cg_labels, cg_masks, w1 = tmp if (iteration - 1) % opt.m_batch == 0: tap_optimizer.zero_grad() cg_optimizer.zero_grad() tap_feats, pred_proposals = tap_model(c3d_feats) tap_loss = tap_crit(pred_proposals, tap_masks_for_loss, tap_labels, w1) loss_sum[0] = loss_sum[0] + tap_loss.item() # Backward Propagation if flag_training_what == 'tap': tap_loss.backward() utils.clip_gradient(tap_optimizer, opt.grad_clip) if iteration % opt.m_batch == 0: tap_optimizer.step() else: if not sc_flag: pred_captions = cg_model(tap_feats, c3d_feats, lda_feats, cg_labels, ind_select_list, soi_select_list, mode='train') cg_loss = cg_crit(pred_captions, cg_labels[:, 1:], cg_masks[:, 1:]) else: gen_result, sample_logprobs, greedy_res = cg_model( tap_feats, c3d_feats, lda_feats, cg_labels, ind_select_list, soi_select_list, mode='train_rl') sentence_info = data['sentences_batch'] if ( flag_training_what != 'cg' and flag_training_what != 'gt_tap_cg' ) else data['gts_sentences_batch'] reward = get_self_critical_reward2( greedy_res, (data['vid'], sentence_info), gen_result, vocab=loader.get_vocab(), opt=opt) cg_loss = rl_crit(sample_logprobs, gen_result, torch.from_numpy(reward).float().cuda()) loss_sum[1] = loss_sum[1] + cg_loss.item() if flag_training_what == 'cg' or flag_training_what == 'gt_tap_cg' or flag_training_what == 'LP_cg': cg_loss.backward() utils.clip_gradient(cg_optimizer, opt.grad_clip) if iteration % opt.m_batch == 0: cg_optimizer.step() if flag_training_what == 'gt_tap_cg': utils.clip_gradient(tap_optimizer, opt.grad_clip) if iteration % opt.m_batch == 0: tap_optimizer.step() elif flag_training_what == 'tap_cg': total_loss = opt.lambda1 * tap_loss + opt.lambda2 * cg_loss total_loss.backward() utils.clip_gradient(tap_optimizer, opt.grad_clip) utils.clip_gradient(cg_optimizer, opt.grad_clip) if iteration % opt.m_batch == 0: tap_optimizer.step() cg_optimizer.step() loss_sum[2] = loss_sum[2] + total_loss.item() torch.cuda.synchronize() # Updating epoch num iteration += 1 if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Print losses, Add to summary if iteration % opt.losses_log_every == 0: end = time.time() losses = np.round(loss_sum / opt.losses_log_every, 3) logger.info( "iter {} (epoch {}, lr {}), avg_iter_loss({}) = {}, time/batch = {:.3f}, bad_vid = {:.3f}" \ .format(iteration, epoch, opt.current_lr, flag_training_what, losses, (end - start) / opt.losses_log_every, bad_video_num)) tf_writer.add_scalar('lr', opt.current_lr, iteration) tf_writer.add_scalar('train_tap_loss', losses[0], iteration) tf_writer.add_scalar('train_tap_prop_loss', losses[3], iteration) tf_writer.add_scalar('train_tap_bound_loss', losses[4], iteration) tf_writer.add_scalar('train_cg_loss', losses[1], iteration) tf_writer.add_scalar('train_total_loss', losses[2], iteration) if sc_flag and (not flag_training_what == 'tap'): tf_writer.add_scalar('avg_reward', np.mean(reward[:, 0]), iteration) loss_history[iteration] = losses lr_history[iteration] = opt.current_lr loss_sum = np.zeros(5) start = time.time() bad_video_num = 0 # Evaluation, and save model if (iteration % opt.save_checkpoint_every == 0) and (epoch >= opt.min_epoch_when_save): eval_kwargs = { 'split': 'val', 'val_all_metrics': 0, 'topN': 100, } eval_kwargs.update(vars(opt)) # eval_kwargs['num_vids_eval'] = int(491) eval_kwargs['topN'] = 100 eval_kwargs2 = { 'split': 'val', 'val_all_metrics': 1, 'num_vids_eval': 4917, } eval_kwargs2.update(vars(opt)) if not opt.num_vids_eval: eval_kwargs['num_vids_eval'] = int(4917.) eval_kwargs2['num_vids_eval'] = 4917 crits = [tap_crit, cg_crit] pred_json_path_T = os.path.join(save_folder, 'pred_sent', 'pred_num{}_iter{}.json') # if 'alter' in opt.training_mode: if flag_training_what == 'tap': eval_kwargs['topN'] = 1000 predictions, eval_score, val_loss = eval_utils.eval_split( allmodels, crits, loader, pred_json_path_T.format(eval_kwargs['num_vids_eval'], iteration), eval_kwargs, flag_eval_what='tap') else: if vars(opt).get('fast_eval_cg', False) == False: predictions, eval_score, val_loss = eval_utils.eval_split( allmodels, crits, loader, pred_json_path_T.format(eval_kwargs['num_vids_eval'], iteration), eval_kwargs, flag_eval_what='tap_cg') predictions2, eval_score2, val_loss2 = eval_utils.eval_split( allmodels, crits, loader, pred_json_path_T.format(eval_kwargs2['num_vids_eval'], iteration), eval_kwargs2, flag_eval_what='cg') if (not vars(opt).get('fast_eval_cg', False) == False) or (not vars(opt).get( 'fast_eval_cg_top10', False) == False): eval_score = eval_score2 val_loss = val_loss2 predictions = predictions2 # else: # predictions, eval_score, val_loss = eval_utils.eval_split(allmodels, crits, loader, pred_json_path, # eval_kwargs, # flag_eval_what=flag_training_what) f_f1 = lambda x, y: 2 * x * y / (x + y) f1 = f_f1(eval_score['Recall'], eval_score['Precision']).mean() if flag_training_what != 'tap': # if only train tap, use the mean of precision and recall as final score current_score = np.array(eval_score['METEOR']).mean() * 100 else: # if train tap_cg, use avg_meteor as final score current_score = f1 for model in allmodels: for name, param in model.named_parameters(): tf_writer.add_histogram(name, param.clone().cpu().data.numpy(), iteration, bins=10) if param.grad is not None: tf_writer.add_histogram( name + '_grad', param.grad.clone().cpu().data.numpy(), iteration, bins=10) tf_writer.add_scalar('val_tap_loss', val_loss[0], iteration) tf_writer.add_scalar('val_cg_loss', val_loss[1], iteration) tf_writer.add_scalar('val_tap_prop_loss', val_loss[3], iteration) tf_writer.add_scalar('val_tap_bound_loss', val_loss[4], iteration) tf_writer.add_scalar('val_total_loss', val_loss[2], iteration) tf_writer.add_scalar('val_score', current_score, iteration) if flag_training_what != 'tap': tf_writer.add_scalar('val_score_gt_METEOR', np.array(eval_score2['METEOR']).mean(), iteration) tf_writer.add_scalar('val_score_gt_Bleu_4', np.array(eval_score2['Bleu_4']).mean(), iteration) tf_writer.add_scalar('val_score_gt_CIDEr', np.array(eval_score2['CIDEr']).mean(), iteration) tf_writer.add_scalar('val_recall', eval_score['Recall'].mean(), iteration) tf_writer.add_scalar('val_precision', eval_score['Precision'].mean(), iteration) tf_writer.add_scalar('f1', f1, iteration) val_result_history[iteration] = { 'val_loss': val_loss, 'eval_score': eval_score } if flag_training_what == 'tap': logger.info( 'Validation the result of iter {}, score(f1/meteor):{},\n all:{}' .format(iteration, current_score, eval_score)) else: mean_score = { k: np.array(v).mean() for k, v in eval_score.items() } gt_mean_score = { k: np.array(v).mean() for k, v in eval_score2.items() } metrics = ['Bleu_4', 'CIDEr', 'METEOR', 'ROUGE_L'] gt_avg_score = np.array([ v for metric, v in gt_mean_score.items() if metric in metrics ]).sum() logger.info( 'Validation the result of iter {}, score(f1/meteor):{},\n all:{}\n mean:{} \n\n gt:{} \n mean:{}\n avg_score: {}' .format(iteration, current_score, eval_score, mean_score, eval_score2, gt_mean_score, gt_avg_score)) # Save model .pth saved_pth = { 'iteration': iteration, 'cg_model': cg_model.state_dict(), 'tap_model': tap_model.state_dict(), 'cg_optimizer': cg_optimizer.state_dict(), 'tap_optimizer': tap_optimizer.state_dict(), } if opt.save_all_checkpoint: checkpoint_path = os.path.join( save_folder, 'model_iter_{}.pth'.format(iteration)) else: checkpoint_path = os.path.join(save_folder, 'model.pth') torch.save(saved_pth, checkpoint_path) logger.info('Save model at iter {} to checkpoint file {}.'.format( iteration, checkpoint_path)) # save info.pkl if current_score > best_val_score: best_val_score = current_score best_epoch = epoch saved_info['best'] = { 'opt': opt, 'iter': iteration, 'epoch': epoch, 'iterators': loader.iterators, 'flag_training_what': flag_training_what, 'split_ix': loader.split_ix, 'best_val_score': best_val_score, 'vocab': loader.get_vocab(), } best_checkpoint_path = os.path.join(save_folder, 'model-best.pth') torch.save(saved_pth, best_checkpoint_path) logger.info( 'Save Best-model at iter {} to checkpoint file.'.format( iteration)) saved_info['last'] = { 'opt': opt, 'iter': iteration, 'epoch': epoch, 'iterators': loader.iterators, 'flag_training_what': flag_training_what, 'split_ix': loader.split_ix, 'best_val_score': best_val_score, 'vocab': loader.get_vocab(), } saved_info['history'] = { 'val_result_history': val_result_history, 'loss_history': loss_history, 'lr_history': lr_history, } with open(os.path.join(save_folder, 'info.pkl'), 'w') as f: cPickle.dump(saved_info, f) logger.info('Save info to info.pkl') # Stop criterion if epoch >= len(flag_training_whats): tf_writer.close() break
def train(opt): if vars(opt).get('start_from', None) is not None: opt.checkpoint_path = opt.start_from opt.id = opt.checkpoint_path.split('/')[-1] print('Point to folder: {}'.format(opt.checkpoint_path)) else: opt.id = datetime.datetime.now().strftime( '%Y%m%d_%H%M%S') + '_' + opt.caption_model opt.checkpoint_path = os.path.join(opt.checkpoint_path, opt.id) if not os.path.exists(opt.checkpoint_path): os.makedirs(opt.checkpoint_path) print('Create folder: {}'.format(opt.checkpoint_path)) # Deal with feature things before anything opt.use_att = utils.if_use_att(opt.caption_model) # opt.use_att = False if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5 loader = DataLoader_UP(opt) opt.vocab_size = loader.vocab_size if opt.use_rela == 1: opt.rela_dict_size = loader.rela_dict_size opt.seq_length = loader.seq_length use_rela = getattr(opt, 'use_rela', 0) try: tb_summary_writer = tf and tf.compat.v1.summary.FileWriter( opt.checkpoint_path) except: print('Set tensorboard error!') pdb.set_trace() infos = {} histories = {} if opt.start_from is not None: # open old infos and check if models are compatible with open(os.path.join(opt.checkpoint_path, 'infos.pkl')) as f: infos = cPickle.load(f) saved_model_opt = infos['opt'] need_be_same = [ "caption_model", "rnn_type", "rnn_size", "num_layers" ] for checkme in need_be_same: assert vars(saved_model_opt)[checkme] == vars( opt )[checkme], "Command line argument and saved model disagree on '%s' " % checkme if os.path.isfile(os.path.join(opt.checkpoint_path, 'histories.pkl')): with open(os.path.join(opt.checkpoint_path, 'histories.pkl')) as f: histories = cPickle.load(f) iteration = infos.get('iter', 0) epoch = infos.get('epoch', 0) val_result_history = histories.get('val_result_history', {}) loss_history = histories.get('loss_history', {}) lr_history = histories.get('lr_history', {}) ss_prob_history = histories.get('ss_prob_history', {}) loader.iterators = infos.get('iterators', loader.iterators) loader.split_ix = infos.get('split_ix', loader.split_ix) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) model = models.setup(opt).cuda() # dp_model = torch.nn.DataParallel(model) # dp_model = torch.nn.DataParallel(model, [0,2,3]) dp_model = model print('### Model summary below###\n {}\n'.format(str(model))) model_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print('model parameter:{}'.format(model_params)) update_lr_flag = True # Assure in training mode dp_model.train() parameters = model.named_children() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer = utils.build_optimizer( filter(lambda p: p.requires_grad, model.parameters()), opt) optimizer.zero_grad() accumulate_iter = 0 train_loss = 0 reward = np.zeros([1, 1]) while True: if update_lr_flag: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False update_lr_flag = False start = time.time() # Load data from train split (0) data = loader.get_batch(opt.train_split) # print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() fc_feats = None att_feats = None att_masks = None ssg_data = None rela_data = None if getattr(opt, 'use_ssg', 0) == 1: if getattr(opt, 'use_isg', 0) == 1: tmp = [ data['fc_feats'], data['labels'], data['masks'], data['att_feats'], data['att_masks'], data['isg_rela_matrix'], data['isg_rela_masks'], data['isg_obj'], data['isg_obj_masks'], data['isg_attr'], data['isg_attr_masks'], data['ssg_rela_matrix'], data['ssg_rela_masks'], data['ssg_obj'], data['ssg_obj_masks'], data['ssg_attr'], data['ssg_attr_masks'] ] tmp = [ _ if _ is None else torch.from_numpy(_).cuda() for _ in tmp ] fc_feats, labels, masks, att_feats, att_masks, \ isg_rela_matrix, isg_rela_masks, isg_obj, isg_obj_masks, isg_attr, isg_attr_masks, \ ssg_rela_matrix, ssg_rela_masks, ssg_obj, ssg_obj_masks, ssg_attr, ssg_attr_masks = tmp # image graph domain isg_data = {} isg_data['att_feats'] = att_feats isg_data['att_masks'] = att_masks isg_data['isg_rela_matrix'] = isg_rela_matrix isg_data['isg_rela_masks'] = isg_rela_masks isg_data['isg_obj'] = isg_obj isg_data['isg_obj_masks'] = isg_obj_masks isg_data['isg_attr'] = isg_attr isg_data['isg_attr_masks'] = isg_attr_masks # text graph domain ssg_data = {} ssg_data['ssg_rela_matrix'] = ssg_rela_matrix ssg_data['ssg_rela_masks'] = ssg_rela_masks ssg_data['ssg_obj'] = ssg_obj ssg_data['ssg_obj_masks'] = ssg_obj_masks ssg_data['ssg_attr'] = ssg_attr ssg_data['ssg_attr_masks'] = ssg_attr_masks else: tmp = [ data['fc_feats'], data['ssg_rela_matrix'], data['ssg_rela_masks'], data['ssg_obj'], data['ssg_obj_masks'], data['ssg_attr'], data['ssg_attr_masks'], data['labels'], data['masks'] ] tmp = [ _ if _ is None else torch.from_numpy(_).cuda() for _ in tmp ] fc_feats, ssg_rela_matrix, ssg_rela_masks, ssg_obj, ssg_obj_masks, ssg_attr, ssg_attr_masks, labels, masks = tmp ssg_data = {} ssg_data['ssg_rela_matrix'] = ssg_rela_matrix ssg_data['ssg_rela_masks'] = ssg_rela_masks ssg_data['ssg_obj'] = ssg_obj ssg_data['ssg_obj_masks'] = ssg_obj_masks ssg_data['ssg_attr'] = ssg_attr isg_data = None ssg_data['ssg_attr_masks'] = ssg_attr_masks else: tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp if not sc_flag: # loss = crit(dp_model(model_zh,model_en,itow_zh,itow, fc_feats, labels, isg_data, ssg_data), labels[:, 1:], masks[:, 1:]) # print('ssg:') # print(ssg_data['ssg_obj']) # print('predict:') # print(dp_model(fc_feats, labels, isg_data, ssg_data)) # print('label:') # print(labels[:, 1:]) loss = crit(dp_model(fc_feats, labels, isg_data, ssg_data), labels[:, 1:], masks[:, 1:]) else: gen_result, sample_logprobs = dp_model(fc_feats, isg_data, ssg_data, opt={'sample_max': 0}, mode='sample') reward = get_self_critical_reward(dp_model, fc_feats, isg_data, ssg_data, data, gen_result, opt) loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda()) accumulate_iter = accumulate_iter + 1 loss = loss / opt.accumulate_number loss.backward() if accumulate_iter % opt.accumulate_number == 0: utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() optimizer.zero_grad() iteration += 1 accumulate_iter = 0 train_loss = loss.item() * opt.accumulate_number end = time.time() if not sc_flag: print("{}/{}/{}|train_loss={:.3f}|time/batch={:.3f}" \ .format(opt.id, iteration, epoch, train_loss, end - start)) else: print("{}/{}/{}|avg_reward={:.3f}|time/batch={:.3f}" \ .format(opt.id, iteration, epoch, np.mean(reward[:, 0]), end - start)) torch.cuda.synchronize() # Update the iteration and epoch if data['bounds']['wrapped']: epoch += 1 update_lr_flag = True # Write the training loss summary if (iteration % opt.losses_log_every == 0) and (iteration != 0): add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration) add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration) add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration) loss_history[iteration] = train_loss if not sc_flag else np.mean( reward[:, 0]) lr_history[iteration] = opt.current_lr ss_prob_history[iteration] = model.ss_prob # make evaluation on validation set, and save model # if (iteration %2 == 0) and (iteration != 0): if (iteration % opt.save_checkpoint_every == 0) and (iteration != 0): # eval model if use_rela: eval_kwargs = { 'split': 'val', 'dataset': opt.input_json, 'use_real': 1 } else: eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) # val_loss, predictions, lang_stats = eval_utils.eval_split(model_zh,model_en,itow_zh,itow, dp_model, crit, loader, eval_kwargs) val_loss, predictions, lang_stats = eval_utils.eval_split( dp_model, crit, loader, eval_kwargs) # Write validation result into summary add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): add_summary_value(tb_summary_writer, k, v, iteration) val_result_history[iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if True: # if true save_id = iteration / opt.save_checkpoint_every if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth') torch.save(optimizer.state_dict(), optimizer_path) # Dump miscalleous informations infos['iter'] = iteration infos['epoch'] = epoch infos['iterators'] = loader.iterators infos['split_ix'] = loader.split_ix infos['best_val_score'] = best_val_score infos['opt'] = opt infos['vocab'] = loader.get_vocab() histories['val_result_history'] = val_result_history histories['loss_history'] = loss_history histories['lr_history'] = lr_history histories['ss_prob_history'] = ss_prob_history with open(os.path.join(opt.checkpoint_path, 'infos.pkl'), 'wb') as f: cPickle.dump(infos, f) with open(os.path.join(opt.checkpoint_path, 'histories.pkl'), 'wb') as f: cPickle.dump(histories, f) if best_flag: checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth') torch.save(model.state_dict(), checkpoint_path) print("model saved to {}".format(checkpoint_path)) with open( os.path.join(opt.checkpoint_path, 'infos-best.pkl'), 'wb') as f: cPickle.dump(infos, f) # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break
def train(opt): # on node-13 this line cauuses a bug from torch.utils.tensorboard import SummaryWriter ################################ # Build dataloader ################################ # the loader here needs to be fixed actually... # so that data loading is correct # need to modify opt here so everything else is correct loader = DataLoader(opt) opt.vocab_size = loader.vocab_size opt.seq_length = loader.seq_length ########################## # Initialize infos ########################## infos = { 'iter': 0, 'epoch': 0, 'loader_state_dict': None, 'vocab': loader.get_vocab(), } # Load old infos(if there is) and check if models are compatible if opt.start_from is not None and os.path.isfile( os.path.join(opt.start_from, 'infos_' + opt.id + '.pkl')): raise Exception("not implemented") infos['opt'] = opt ######################### # Build logger ######################### # naive dict logger histories = defaultdict(dict) if opt.start_from is not None and os.path.isfile( os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl')): with open(os.path.join(opt.start_from, 'histories_' + opt.id + '.pkl'), 'rb') as f: histories.update(utils.pickle_load(f)) # tensorboard logger tb_summary_writer = SummaryWriter(opt.checkpoint_path) ########################## # Build model ########################## # opt.vocab = loader.get_vocab() opt.vocab = loader.get_vocab() model = TransformerLM(opt).cuda() # only set up the language model del opt.vocab # Load pretrained weights: if opt.start_from is not None and os.path.isfile( os.path.join(opt.start_from, 'model.pth')): model.load_state_dict( torch.load(os.path.join(opt.start_from, 'model.pth'))) # Wrap generation model with loss function(used for training) # This allows loss function computed separately on each machine lw_model = LossWrapper(model, opt) # Wrap with dataparallel dp_model = torch.nn.DataParallel(model) dp_lw_model = torch.nn.DataParallel(lw_model) ########################## # Build optimizer ########################## if opt.noamopt: assert opt.caption_model == 'transformer', 'noamopt can only work with transformer' optimizer = utils.get_std_opt(model, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup) elif opt.reduce_on_plateau: optimizer = utils.build_optimizer(model.parameters(), opt) optimizer = utils.ReduceLROnPlateau(optimizer, factor=0.5, patience=3) else: optimizer = utils.build_optimizer(model.parameters(), opt) # Load the optimizer if opt.start_from is not None and os.path.isfile( os.path.join(opt.start_from, "optimizer.pth")): optimizer.load_state_dict( torch.load(os.path.join(opt.start_from, 'optimizer.pth'))) ######################### # Get ready to start ######################### iteration = infos['iter'] epoch = infos['epoch'] # For back compatibility if 'iterators' in infos: infos['loader_state_dict'] = { split: { 'index_list': infos['split_ix'][split], 'iter_counter': infos['iterators'][split] } for split in ['train', 'val', 'test'] } loader.load_state_dict(infos['loader_state_dict']) if opt.load_best_score == 1: best_val_score = infos.get('best_val_score', None) if opt.noamopt: optimizer._step = iteration # flag indicating finish of an epoch # Always set to True at the beginning to initialize the lr or etc. epoch_done = True # Assure in training mode dp_lw_model.train() # Start training try: while True: if epoch_done: if not opt.noamopt and not opt.reduce_on_plateau: # Assign the learning rate if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: frac = (epoch - opt.learning_rate_decay_start ) // opt.learning_rate_decay_every decay_factor = opt.learning_rate_decay_rate**frac opt.current_lr = opt.learning_rate * decay_factor else: opt.current_lr = opt.learning_rate utils.set_lr(optimizer, opt.current_lr) # set the decayed rate # Assign the scheduled sampling prob if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: frac = (epoch - opt.scheduled_sampling_start ) // opt.scheduled_sampling_increase_every opt.ss_prob = min( opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob) model.ss_prob = opt.ss_prob # If start self critical training if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: sc_flag = True init_scorer(opt.cached_tokens) else: sc_flag = False # If start structure loss training if opt.structure_after != -1 and epoch >= opt.structure_after: struc_flag = True init_scorer(opt.cached_tokens) else: struc_flag = False epoch_done = False start = time.time() # Load data from train split (0) data = loader.get_batch('train') print('Read data:', time.time() - start) torch.cuda.synchronize() start = time.time() tmp = [ data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks'] ] tmp = [_ if _ is None else _.cuda() for _ in tmp] fc_feats, att_feats, labels, masks, att_masks = tmp optimizer.zero_grad() model_out = dp_lw_model(fc_feats, att_feats, labels, masks, att_masks, data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag) loss = model_out['loss'].mean() loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.item() torch.cuda.synchronize() end = time.time() if struc_flag: print( "iter {} (epoch {}), train_loss = {:.3f}, lm_loss = {:.3f}, struc_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, model_out['lm_loss'].mean().item(), model_out['struc_loss'].mean().item(), end - start)) elif not sc_flag: print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, train_loss, end - start)) else: print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \ .format(iteration, epoch, model_out['reward'].mean(), end - start)) # Update the iteration and epoch iteration += 1 if data['bounds']['wrapped']: epoch += 1 epoch_done = True # Write the training loss summary if (iteration % opt.losses_log_every == 0): tb_summary_writer.add_scalar('train_loss', train_loss, iteration) if opt.noamopt: opt.current_lr = optimizer.rate() elif opt.reduce_on_plateau: opt.current_lr = optimizer.current_lr tb_summary_writer.add_scalar('learning_rate', opt.current_lr, iteration) tb_summary_writer.add_scalar('scheduled_sampling_prob', model.ss_prob, iteration) if sc_flag: tb_summary_writer.add_scalar('avg_reward', model_out['reward'].mean(), iteration) elif struc_flag: tb_summary_writer.add_scalar( 'lm_loss', model_out['lm_loss'].mean().item(), iteration) tb_summary_writer.add_scalar( 'struc_loss', model_out['struc_loss'].mean().item(), iteration) tb_summary_writer.add_scalar( 'reward', model_out['reward'].mean().item(), iteration) histories['loss_history'][ iteration] = train_loss if not sc_flag else model_out[ 'reward'].mean() histories['lr_history'][iteration] = opt.current_lr histories['ss_prob_history'][iteration] = model.ss_prob # update infos infos['iter'] = iteration infos['epoch'] = epoch infos['loader_state_dict'] = loader.state_dict() # make evaluation on validation set, and save model if (iteration % opt.save_checkpoint_every == 0): # eval model eval_kwargs = {'split': 'val', 'dataset': opt.input_json} eval_kwargs.update(vars(opt)) val_loss, predictions, lang_stats = eval_utils.eval_split( dp_model, lw_model.crit, loader, eval_kwargs) if opt.reduce_on_plateau: if lang_stats is not None: if 'CIDEr' in lang_stats: optimizer.scheduler_step(-lang_stats['CIDEr']) else: optimizer.scheduler_step(val_loss) else: optimizer.scheduler_step(val_loss) # Write validation result into summary tb_summary_writer.add_scalar('validation loss', val_loss, iteration) if lang_stats is not None: for k, v in lang_stats.items(): tb_summary_writer.add_scalar(k, v, iteration) histories['val_result_history'][iteration] = { 'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions } # Save model if is improving on validation result if opt.language_eval == 1: current_score = lang_stats['CIDEr'] else: current_score = -val_loss best_flag = False if best_val_score is None or current_score > best_val_score: best_val_score = current_score best_flag = True # Dump miscellaneous information infos['best_val_score'] = best_val_score utils.save_checkpoint(opt, model, infos, optimizer, histories) if opt.save_history_ckpt: utils.save_checkpoint(opt, model, infos, optimizer, append=str(iteration)) if best_flag: utils.save_checkpoint(opt, model, infos, optimizer, append='best') # Stop if reaching max epochs if epoch >= opt.max_epochs and opt.max_epochs != -1: break except (RuntimeError, KeyboardInterrupt): print('Save ckpt on exception ...') utils.save_checkpoint(opt, model, infos, optimizer) print('Save ckpt done.') stack_trace = traceback.format_exc() print(stack_trace)
def train(train_loader, val_loader, model, crit, optimizer, lr_scheduler, opt, rl_crit=None): model.train() model = nn.DataParallel(model) # lowest val loss best_loss = None for epoch in range(opt.epochs): lr_scheduler.step() iteration = 0 # If start self crit training if opt.self_crit_after != -1 and epoch >= opt.self_crit_after: sc_flag = True init_cider_scorer(opt.cached_tokens) else: sc_flag = False for data in train_loader: torch.cuda.synchronize() fc_feats = Variable(data['fc_feats']).cuda() labels = Variable(data['labels']).long().cuda() masks = Variable(data['masks']).cuda() if not sc_flag: seq_probs, predicts = model(fc_feats, labels) loss = crit(seq_probs, labels[:, 1:], masks[:, 1:]) else: gen_result, sample_logprobs = model.sample(fc_feats, vars(opt)) # print(gen_result) reward = get_self_critical_reward(model, fc_feats, data, gen_result) loss = rl_crit( sample_logprobs, gen_result, Variable(torch.from_numpy(reward).float().cuda())) optimizer.zero_grad() loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() iteration += 1 if not sc_flag: print("iter %d (epoch %d), train_loss = %.6f" % (iteration, epoch, train_loss)) else: print("iter %d (epoch %d), avg_reward = %.3f" % (iteration, epoch, np.mean(reward[:, 0]))) # lowest val loss if epoch % opt.save_checkpoint_every == 0: checkpoint_path = os.path.join(opt.checkpoint_path, 'model_%d.pth' % (epoch)) torch.save(model.state_dict(), checkpoint_path) print("model saved to %s" % (checkpoint_path)) val_loss = val(val_loader, model, crit) print("Val loss is: %.6f" % (val_loss)) model.train() if best_loss is None or val_loss < best_loss: print("(epoch %d), now lowest val loss is %.6f" % (epoch, val_loss)) checkpoint_path = os.path.join(opt.checkpoint_path, 'model_best.pth') torch.save(model.state_dict(), checkpoint_path) print("best model saved to %s" % (checkpoint_path)) best_loss = val_loss