print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print "Loading data ..." data = misc.load_data(dataset) # set sigma to something useful from milk.unsupervised import pdist sigma = np.median(pdist(data[0])) print "Done, %s samples with %s features loaded into " "memory" % data[0].shape score, res_shogun = misc.bench(bench_shogun, data) print "Shogun: mean %.2f, std %.2f" % (np.mean(res_shogun), np.std(res_shogun)) print "Score: %.2f\n" % score score, res_mdp = misc.bench(bench_mdp, data) print "MDP: mean %.2f, std %.2f" % (np.mean(res_mdp), np.std(res_mdp)) print "Score: %.2f\n" % score score, res_skl = misc.bench(bench_skl, data) print "scikits.learn: mean %.2f, std %.2f" % (np.mean(res_skl), np.std(res_skl)) print "Score: %.2f\n" % score score, res_mlpy = misc.bench(bench_mlpy, data) print "MLPy: mean %.2f, std %.2f" % (np.mean(res_mlpy), np.std(res_mlpy)) print "Score: %.2f\n" % score
start = datetime.now() clf = linear_model.LogisticRegression() clf.fit(X, y) score = np.mean(clf.predict(T) == valid) return score, datetime.now() - start if __name__ == '__main__': import sys, misc # don't bother me with warnings import warnings; warnings.simplefilter('ignore') np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape res_skl = misc.bench(bench_skl, data) print 'MLPy: mean %.2f, std %.2f\n' % ( np.mean(res_skl), np.std(res_skl))
] elif dataset == 'cover_type': array_data = [misc.load_cover_type(RND_SEED)] elif dataset == 'higgs': # We will select some samples for higgs as well array_data = [ misc.load_higgs(random_state=RND_SEED, n_samples=ns) for ns in N_SAMPLES ] else: raise ValueError('The dataset is not known. The possible choices are:' ' random') # Save only the time for the moment res_xgb = [[data[0].shape, p, misc.bench(bench_xgb, data, n=n_try, **p)] for p in params_list for data in array_data] # Check that the path is existing if not os.path.exists(store_dir): os.makedirs(store_dir) # Define the name depending of the type of classifier used if type_tree == 'exact': filename = 'xgboost_exact_nocache_' + dataset + '.pk' elif type_tree == 'approx-global': filename = 'xgboost_approx_global_' + dataset + '.pk' elif type_tree == 'approx-local': filename = 'xgboost_approx_local_' + dataset + '.pk' store_filename = os.path.join(store_dir, filename)
if dataset == 'random': array_data = [ misc.generate_samples(ns, nf, RND_SEED) for ns in N_SAMPLES for nf in N_FEATURES ] elif dataset == 'cover_type': array_data = [misc.load_cover_type(RND_SEED)] elif dataset == 'higgs': # Select a subset of samples array_data = [ misc.load_higgs(random_state=RND_SEED, n_samples=ns) for ns in N_SAMPLES ] else: raise ValueError('The dataset is not known. The possible choices are:' ' random') # Save only the time for the moment res_lgbm = [[data[0].shape, p, misc.bench(bench_lgbm, data, n=n_try, **p)] for p in params_list for data in array_data] # Check that the path is existing if not os.path.exists(store_dir): os.makedirs(store_dir) filename = 'lightgbm_' + dataset + '.pk' store_filename = os.path.join(store_dir, filename) joblib.dump(res_lgbm, store_filename)
np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape score, res_mdp = misc.bench(bench_mdp, data) print 'MDP: mean %s, std %s' % ( np.mean(res_mdp), np.std(res_mdp)) print 'Explained variance: %s\n'% score score, res_skl = misc.bench(bench_skl, data) print 'scikits.learn: mean %.2f, std %.2f' % ( np.mean(res_skl), np.std(res_skl)) print 'Explained variance: %s\n'% score score, res_pybrain = misc.bench(bench_pybrain, data) print 'Pybrain: mean %s, std %s' % ( np.mean(res_pybrain), np.std(res_pybrain)) print 'Explained variance: %s\n'% score score, res_milk = misc.bench(bench_milk, data)
import sys, misc # don't bother me with warnings import warnings; warnings.simplefilter('ignore') np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape score, res_skl = misc.bench(bench_skl, data) print 'scikits.learn: mean %s, std %s' % (res_skl.mean(), res_skl.std()) print 'MSE ', score score, res_mlpy = misc.bench(bench_mlpy, data) print 'MLPy: mean %s, std %s' % (res_mlpy.mean(), res_mlpy.std()) print 'MSE ', score score, res_pymvpa = misc.bench(bench_pymvpa, data) print 'PyMVPA: mean %s, std %s' % (res_pymvpa.mean(), res_pymvpa.std()) print 'MSE ', score
import warnings warnings.simplefilter('ignore') np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape score, res_skl = misc.bench(bench_skl, data) print 'scikits.learn: mean %.2f, std %.2f' % (np.mean(res_skl), np.std(res_skl)) print 'MSE: %s\n' % score score, res_mlpy = misc.bench(bench_mlpy, data) print 'MLPy: mean %.2f, std %.2f' % (np.mean(res_mlpy), np.std(res_mlpy)) print 'MSE: %s\n' % score score, res_pymvpa = misc.bench(bench_pymvpa, data) print 'PyMVPA: mean %.2f, std %.2f' % (np.mean(res_pymvpa), np.std(res_pymvpa)) print 'MSE: %s\n' % score
print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) # set sigma to something useful from milk.unsupervised import pdist sigma = np.median(pdist(data[0])) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape score, res_shogun = misc.bench(bench_shogun, data) print 'Shogun: mean %.2f, std %.2f' % ( np.mean(res_shogun), np.std(res_shogun)) print 'Score: %.2f\n' % score score, res_mdp = misc.bench(bench_mdp, data) print 'MDP: mean %.2f, std %.2f' % ( np.mean(res_mdp), np.std(res_mdp)) print 'Score: %.2f\n' % score score, res_skl = misc.bench(bench_skl, data) print 'scikits.learn: mean %.2f, std %.2f' % ( np.mean(res_skl), np.std(res_skl)) print 'Score: %.2f\n' % score score, res_mlpy = misc.bench(bench_mlpy, data)
np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape score, res_mdp = misc.bench(bench_mdp, data) print 'MDP: mean %s, std %s' % (np.mean(res_mdp), np.std(res_mdp)) print 'Explained variance: %s\n' % score score, res_skl = misc.bench(bench_skl, data) print 'scikits.learn: mean %.2f, std %.2f' % (np.mean(res_skl), np.std(res_skl)) print 'Explained variance: %s\n' % score score, res_pybrain = misc.bench(bench_pybrain, data) print 'Pybrain: mean %s, std %s' % (np.mean(res_pybrain), np.std(res_pybrain)) print 'Explained variance: %s\n' % score score, res_milk = misc.bench(bench_milk, data) print 'milk: mean %s, std %s' % (np.mean(res_milk), np.std(res_milk))
if __name__ == '__main__': import sys, misc # don't bother me with warnings import warnings; warnings.simplefilter('ignore') np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape ## score, res_skl = misc.bench(bench_skl, data) ## print 'scikits.learn: mean %s, std %s' % (res_skl.mean(), res_skl.std()) score, res_mlpy = misc.bench(bench_mlpy, data) print 'MLPy: mean %s, std %s' % (res_mlpy.mean(), res_mlpy.std()) ## score, res_pymvpa = misc.bench(bench_pymvpa, data) ## print 'PyMVPA: mean %s, std %s' % (res_pymvpa.mean(), res_pymvpa.std())
# from milk.unsupervised import pca as milk_pca start = datetime.now() _ = milk_pca(X) return datetime.now() - start if __name__ == '__main__': # don't bother me with warnings import warnings; warnings.simplefilter('ignore') np.seterr(all='ignore') print __doc__ + '\n' res_mdp = bench(bench_mdp) print 'MDP: mean %s, std %s' % ( np.mean(res_mdp), np.std(res_mdp)) res_skl = bench(bench_skl) print 'scikits.learn: mean %s, std %s' % ( np.mean(res_skl), np.std(res_skl)) res_pybrain = bench(bench_pybrain) print 'Pybrain: mean %s, std %s' % ( np.mean(res_pybrain), np.std(res_pybrain)) res_milk = bench(bench_milk) print 'milk: mean %s, std %s' % ( np.mean(res_milk), np.std(res_milk))
np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape score, res_shogun = misc.bench(bench_shogun, data) print 'Shogun: mean %.2f, std %.2f' % ( np.mean(res_shogun), np.std(res_shogun)) print 'Score: %2f\n' % score score, res_mdp = misc.bench(bench_mdp, data) print 'MDP: mean %.2f, std %.2f' % ( np.mean(res_mdp), np.std(res_mdp)) print 'Score: %2f\n' % score score, res_skl = misc.bench(bench_skl, data) print 'scikits.learn: mean %.2f, std %.2f' % ( np.mean(res_skl), np.std(res_skl)) print 'Score: %2f\n' % score score, res_mlpy = misc.bench(bench_mlpy, data)
np.seterr(all='ignore') print __doc__ + '\n' if not len(sys.argv) == 2: print misc.USAGE % __file__ sys.exit(-1) else: dataset = sys.argv[1] print 'Loading data ...' data = misc.load_data(dataset) print 'Done, %s samples with %s features loaded into ' \ 'memory' % data[0].shape res_shogun = misc.bench(bench_shogun, data) print 'Shogun: mean %.2f, std %.2f\n' % (res_shogun.mean(), res_shogun.std()) res_mdp = misc.bench(bench_mdp, data) print 'MDP: mean %.2f, std %.2f\n' % (res_mdp.mean(), res_mdp.std()) res_skl = misc.bench(bench_skl, data) print 'scikits.learn: mean %.2f, std %.2f\n' % (res_skl.mean(), res_skl.std()) res_mlpy = misc.bench(bench_mlpy, data) print 'MLPy: mean %.2f, std %.2f\n' % (res_mlpy.mean(), res_mlpy.std()) res_milk = misc.bench(bench_milk, data) print 'milk: mean %.2f, std %.2f\n' % (res_milk.mean(), res_milk.std()) res_pymvpa = misc.bench(bench_pymvpa, data)