def setup(gpu): global segmentation_module # Network Builders net_encoder = ModelBuilder.build_encoder( arch='resnet50dilated', fc_dim=2048, weights=downloads.download_data_file( 'http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth', 'semantic-segmentation-pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth' )) net_decoder = ModelBuilder.build_decoder( arch='ppm_deepsup', fc_dim=2048, num_class=150, weights=downloads.download_data_file( 'http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/decoder_epoch_20.pth', 'semantic-segmentation-pytorch/ade20k-resnet50dilated-ppm_deepsup/decoder_epoch_20.pth' ), use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.eval() segmentation_module.cuda()
def _load_mistcsail_model(encoder, decoder, encoder_path=None, decoder_path=None): from mit_semseg.models import ModelBuilder, SegmentationModule from mit_semseg.config import cfg if encoder_path is None: encoder_path = str(Path(__file__).parents[0].joinpath('weights', f'encoder_{encoder}.pth')) if decoder_path is None: decoder_path = str(Path(__file__).parents[0].joinpath('weights', f'decoder_{decoder}.pth')) config_file = str(Path(__file__).parents[0].joinpath('config', f'ade20k-{encoder}-{decoder}.yaml')) cfg.merge_from_file(config_file) net_encoder = ModelBuilder.build_encoder( arch=encoder, fc_dim=cfg.MODEL.fc_dim, weights=encoder_path) net_decoder = ModelBuilder.build_decoder( arch=decoder, fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=decoder_path, use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) model = SegmentationModule(net_encoder, net_decoder, crit) return model
def worker(cfg, gpu_id, start_idx, end_idx, result_queue): torch.cuda.set_device(gpu_id) # Dataset and Loader dataset_val = ValDataset(cfg.DATASET.root_dataset, cfg.DATASET.list_val, cfg.DATASET, start_idx=start_idx, end_idx=end_idx) loader_val = torch.utils.data.DataLoader(dataset_val, batch_size=cfg.VAL.batch_size, shuffle=False, collate_fn=user_scattered_collate, num_workers=2) # Network Builders net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder.lower(), fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder.lower(), fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.cuda() # Main loop evaluate(segmentation_module, loader_val, cfg, gpu_id, result_queue)
def main(cfg, gpu): torch.cuda.set_device(gpu) # Network Builders net_encoder = ModelBuilder.build_encoder(arch=cfg.MODEL.arch_encoder, fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder(arch=cfg.MODEL.arch_decoder, fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) # Dataset and Loader dataset_test = TestDataset(cfg.list_test, cfg.DATASET) loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=cfg.TEST.batch_size, shuffle=False, collate_fn=user_scattered_collate, num_workers=5, drop_last=True) segmentation_module.cuda() # Main loop test(segmentation_module, loader_test, gpu) print('Inference done!')
def __init__(self): """ extract semantic map from pretrained model, for knowing where to ignore in the image, since we only have depth info on mountains. """ self.names = {} with open('semseg/object150_info.csv') as f: reader = csv.reader(f) next(reader) for row in reader: self.names[int(row[0])] = row[5].split(";")[0] # Network Builders self.net_encoder = ModelBuilder.build_encoder( arch='resnet50dilated', fc_dim=2048, weights= 'semseg/ckpt/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth' ) self.net_decoder = ModelBuilder.build_decoder( arch='ppm_deepsup', fc_dim=2048, num_class=150, weights= 'semseg/ckpt/ade20k-resnet50dilated-ppm_deepsup/decoder_epoch_20.pth', use_softmax=True) self.crit = torch.nn.NLLLoss(ignore_index=-1) self.segmentation_module = SegmentationModule(self.net_encoder, self.net_decoder, self.crit) self.segmentation_module.eval() self.segmentation_module.to(device=defs.get_dev())
def initialize(): colors = scipy.io.loadmat('data/color150.mat')['colors'] names = {} with open('data/object150_info.csv') as f: reader = csv.reader(f) next(reader) for row in reader: names[int(row[0])] = row[5].split(";")[0] # Network Builders net_encoder = ModelBuilder.build_encoder( arch='resnet50dilated', fc_dim=2048, weights='ckpt/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth') net_decoder = ModelBuilder.build_decoder( arch='ppm_deepsup', fc_dim=2048, num_class=150, weights='ckpt/ade20k-resnet50dilated-ppm_deepsup/decoder_epoch_20.pth', use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module = segmentation_module.eval() x = torch.rand(3,672,504) output_size = x.shape # segmentation_module.cuda() with torch.no_grad(): with torch.jit.optimized_execution(True, {'target_device': 'eia:0'}): segmentation_module = torch.jit.trace(segmentation_module, x[None]) # torch.jit.save(segmentation_module, 'traced.pt') return segmentation_module
def _load_model(self, cfg_file, gpu): if gpu is not None: torch.cuda.set_device(0) basepath = rospkg.RosPack().get_path('object_segmentation') cfg.merge_from_file(basepath + "/" + cfg_file) logger = setup_logger(distributed_rank=0) logger.info(f"Loaded configuration file {cfg_file}") logger.info("Running with config:\n{}".format(cfg)) cfg.MODEL.arch_encoder = cfg.MODEL.arch_encoder.lower() cfg.MODEL.arch_decoder = cfg.MODEL.arch_decoder.lower() # absolute paths of model weights cfg.MODEL.weights_encoder = ( Path(basepath) / cfg.DIR / ('encoder_' + cfg.TEST.checkpoint)).as_posix() cfg.MODEL.weights_decoder = ( Path(basepath) / cfg.DIR / ('decoder_' + cfg.TEST.checkpoint)).as_posix() if not os.path.exists(cfg.MODEL.weights_encoder) or not os.path.exists( cfg.MODEL.weights_decoder): download.ycb(Path(basepath) / 'ckpt') assert os.path.exists( cfg.MODEL.weights_encoder ), f"checkpoint {cfg.MODEL.weights_encoder} does not exitst!" assert os.path.exists( cfg.MODEL.weights_decoder ), f"checkpoint {cfg.MODEL.weights_decoder} does not exitst!" # Network Builders net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder, fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder, fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) if self.gpu is not None: segmentation_module.cuda() segmentation_module.eval() self.model = segmentation_module
def __init__(self, encoder_weights, decoder_weights): super().__init__() self.impl = SegmentationModule( net_enc=ModelBuilder.build_encoder(arch="hrnetv2", fc_dim=720, weights=encoder_weights), net_dec=ModelBuilder.build_decoder(arch="c1", fc_dim=720, num_class=150, weights=decoder_weights, use_softmax=True), crit=None, )
def segmentation_model_init(): if not os.path.exists(model_folder): os.makedirs(model_folder) ENCODER_NAME = 'resnet101' DECODER_NAME = 'upernet' PRETRAINED_ENCODER_MODEL_URL = 'http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-%s-%s/encoder_epoch_50.pth' % ( ENCODER_NAME, DECODER_NAME) PRETRAINED_DECODER_MODEL_URL = 'http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-%s-%s/decoder_epoch_50.pth' % ( ENCODER_NAME, DECODER_NAME) pretrained_encoder_file = ENCODER_NAME + basename( PRETRAINED_ENCODER_MODEL_URL) pretrained_decoder_file = DECODER_NAME + basename( PRETRAINED_DECODER_MODEL_URL) encoder_path = os.path.join(model_folder, pretrained_encoder_file) decoder_path = os.path.join(model_folder, pretrained_decoder_file) if not os.path.exists(encoder_path): urllib.request.urlretrieve(PRETRAINED_ENCODER_MODEL_URL, encoder_path) if not os.path.exists(decoder_path): urllib.request.urlretrieve(PRETRAINED_DECODER_MODEL_URL, decoder_path) # options options = SimpleNamespace(fc_dim=2048, num_class=150, imgSizes=[300, 400, 500, 600], imgMaxSize=1000, padding_constant=8, segm_downsampling_rate=8) # create model builder = ModelBuilder() net_encoder = builder.build_encoder(arch=ENCODER_NAME, weights=encoder_path, fc_dim=options.fc_dim) net_decoder = builder.build_decoder(arch=DECODER_NAME, weights=decoder_path, fc_dim=options.fc_dim, num_class=options.num_class, use_softmax=True) segmentation_module = SegmentationModule(net_encoder, net_decoder, torch.nn.NLLLoss(ignore_index=-1)) segmentation_module = segmentation_module.eval() torch.set_grad_enabled(False) if torch.cuda.is_available(): segmentation_module = segmentation_module.cuda() return segmentation_module, options
def load_model_from_cfg(cfg): model_config, encoder_path, decoder_path = parse_model_config(cfg) net_encoder = ModelBuilder.build_encoder( arch=model_config["MODEL"]['arch_encoder'], fc_dim=model_config['MODEL']['fc_dim'], weights=encoder_path) net_decoder = ModelBuilder.build_decoder( arch=model_config["MODEL"]['arch_decoder'], fc_dim=model_config['MODEL']['fc_dim'], num_class=model_config['DATASET']['num_class'], weights=decoder_path, use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) return segmentation_module
def load_model(): net_encoder = ModelBuilder.build_encoder( arch='resnet50dilated', fc_dim=2048, weights='models/encoder_epoch_20.pth') net_decoder = ModelBuilder.build_decoder( arch='ppm_deepsup', fc_dim=2048, num_class=150, weights='models/decoder_epoch_20.pth', use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.eval() #segmentation_module.cuda() return segmentation_module
def semantic_segmentation(image_folder): download_segmentation() # Network Builders net_encoder = ModelBuilder.build_encoder( arch='resnet101dilated', fc_dim=2048, weights='data/segm_data/encoder_epoch_25.pth') net_decoder = ModelBuilder.build_decoder( arch='ppm_deepsup', fc_dim=2048, num_class=150, weights='data/segm_data/decoder_epoch_25.pth', use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.eval() segmentation_module.cuda() # Load and normalize one image as a singleton tensor batch pil_to_tensor = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], # These are RGB mean+std values std=[0.229, 0.224, 0.225]) # across a large photo dataset. ]) pil_image = PIL.Image.open(os.path.join(image_folder, '000000.jpg')).convert('RGB') img_original = np.array(pil_image) img_data = pil_to_tensor(pil_image) singleton_batch = {'img_data': img_data[None].cuda()} output_size = img_data.shape[1:] # Run the segmentation at the highest resolution. with torch.no_grad(): scores = segmentation_module(singleton_batch, segSize=output_size) # Get the predicted scores for each pixel _, pred = torch.max(scores, dim=1) pred = pred.cpu()[0].numpy() del net_encoder, net_decoder, segmentation_module return pred
def __init__(self, model_name, model_path): self.model_name = model_name self.model_path = model_path # torch.cuda.set_device(0) # Network Builders net_encoder = ModelBuilder.build_encoder(arch="hrnetv2", fc_dim=720, weights=self.model_path) net_decoder = ModelBuilder.build_decoder(arch="c1", fc_dim=720, num_class=2, weights=self.model_path, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) self.segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
def main(): args = build_argparser().parse_args() cfg.merge_from_file(args.cfg) #cfg.merge_from_list(args.opts) logger = setup_logger(distributed_rank=0) # TODO logger.info("Loaded configuration file {}".format(args.cfg)) logger.info("Running with config:\n{}".format(cfg)) cfg.MODEL.arch_encoder = cfg.MODEL.arch_encoder.lower() cfg.MODEL.arch_decoder = cfg.MODEL.arch_decoder.lower() # absolute paths of model weights cfg.MODEL.weights_encoder = os.path.join( cfg.DIR, 'encoder_' + cfg.TEST.checkpoint) cfg.MODEL.weights_decoder = os.path.join( cfg.DIR, 'decoder_' + cfg.TEST.checkpoint) assert os.path.exists(cfg.MODEL.weights_encoder) and \ os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!" # Network Builders net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder, fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder, fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) seg_model = SegmentationModule(net_encoder, net_decoder, None) input = torch.randn(1, 3, 320, 320) #input_decoder = torch.randn(1, 180, 720, 3, 3) segSize = (256, 256) #torch.onnx.export(net_encoder, input, "encoder.onnx", opset_version=9, verbose=True) torch.onnx.export(seg_model, input, "seg.onnx", opset_version=9, verbose=True)
def load_model_from_url(semsegPath): model_urls = { 'encoder': 'http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth', 'decoder': 'http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/decoder_epoch_20.pth' } if not os.path.exists(os.path.join(semsegPath, 'ckpt')): os.makedirs(os.path.join(semsegPath, 'ckpt')) r = requests.get(model_urls['encoder']) with open(os.path.join(semsegPath, 'ckpt/encoder.pth'), 'wb') as f: f.write(r.content) r = requests.get(model_urls['decoder']) with open(os.path.join(semsegPath, 'ckpt/decoder.pth'), 'wb') as f: f.write(r.content) net_encoder = ModelBuilder.build_encoder(arch='resnet50dilated', fc_dim=2048, weights=os.path.join( semsegPath, 'ckpt/encoder.pth')) net_decoder = ModelBuilder.build_decoder(arch='ppm_deepsup', fc_dim=2048, num_class=150, weights=os.path.join( semsegPath, 'ckpt/decoder.pth'), use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.eval() segmentation_module.cuda() return segmentation_module
def create_network(cfg, gpu): torch.cuda.set_device(gpu) # Network Builders net_encoder = ModelBuilder.build_encoder(arch=cfg.MODEL.arch_encoder, fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder(arch=cfg.MODEL.arch_decoder, fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.cuda() # Main loop return segmentation_module, gpu print('Inference done!')
def huawei_seg(imgs): parser = argparse.ArgumentParser( description="PyTorch Semantic Segmentation Testing") parser.add_argument( "--cfg", default="config/ade20k-hrnetv2-huawei.yaml", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--gpu", default=0, type=int, help="gpu id for evaluation") args = parser.parse_args() cfg.merge_from_file(args.cfg) cfg.MODEL.arch_encoder = cfg.MODEL.arch_encoder.lower() cfg.MODEL.arch_decoder = cfg.MODEL.arch_decoder.lower() # absolute paths of model weights cfg.MODEL.weights_encoder = os.path.join(cfg.DIR, 'encoder_' + cfg.TEST.checkpoint) cfg.MODEL.weights_decoder = os.path.join(cfg.DIR, 'decoder_' + cfg.TEST.checkpoint) # imgs = [imgs] cfg.list_test = [{'fpath_img': x} for x in imgs] torch.cuda.set_device(args.gpu) # Network Builders net_encoder = ModelBuilder.build_encoder(arch=cfg.MODEL.arch_encoder, fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder(arch=cfg.MODEL.arch_decoder, fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) # Dataset and Loader dataset_test = InferDataset(cfg.list_test, cfg.DATASET) loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=1, shuffle=False, collate_fn=user_scattered_collate, num_workers=5, drop_last=True) segmentation_module.cuda() loader = loader_test # Main loop segmentation_module.eval() pbar = tqdm(total=len(loader)) for batch_data in loader: # process data batch_data = batch_data[0] segSize = (batch_data['img_ori'].shape[0], batch_data['img_ori'].shape[1]) img_resized_list = batch_data['img_data'] with torch.no_grad(): scores = torch.zeros(1, cfg.DATASET.num_class, segSize[0], segSize[1]) scores = async_copy_to(scores, args.gpu) for img in img_resized_list: feed_dict = batch_data.copy() feed_dict['img_data'] = img del feed_dict['img_ori'] del feed_dict['info'] feed_dict = async_copy_to(feed_dict, args.gpu) # forward pass pred_tmp = segmentation_module(feed_dict, segSize=segSize) # print(pred_tmp.shape)#torch.Size([1, 2, 1024, 1024]) scores = scores + pred_tmp / len(cfg.DATASET.imgSizes) _, pred = torch.max(scores, dim=1) pred = as_numpy(pred.squeeze(0).cpu()) # visualization visualize_result((batch_data['img_ori'], batch_data['info']), pred, cfg) pbar.update(1) # return pred
# net_weight_1='/home/admins/qyl/huawei_compete/semantic-segmentation-pytorch/ckpt/ade20k-hrnetv2-c1/encoder_epoch_20.pth' # net_weight_2='/home/admins/qyl/huawei_compete/semantic-segmentation-pytorch/ckpt/ade20k-hrnetv2-c1/decoder_epoch_20.pth' # dic # # ["encoder"]=torch.load(net_weight_1) # dic["decoder"]=torch.load(net_weight_2) # torch.save(dic,"model_best_20.pth") # print("merge model finished..........") # # Network Builders model_path = 'model_best.pth' net_encoder = ModelBuilder.build_encoder(arch="hrnetv2", fc_dim=720, weights=model_path) net_decoder = ModelBuilder.build_decoder(arch="c1", fc_dim=720, num_class=2, weights=model_path, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) image_demo_dir = "./demo/182_28_9.png" imags = Image.open(image_demo_dir) imags = np.array(imags) imags = imags[512:1024, 0:512, :] print(imags.shape) imags = Image.fromarray(np.uint8(imags)) pred = huawei_seg(imags, segmentation_module) print(pred)
os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!" if not os.path.isdir(cfg.TEST.result): os.makedirs(cfg.TEST.result) cfg.TEST.result += 'result' torch.cuda.set_device(args.gpu) # Network Builders net_encoder = ModelBuilder.build_encoder(arch=cfg.MODEL.arch_encoder, fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder(arch=cfg.MODEL.arch_decoder, fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) # generate testing image list if os.path.isdir(args.imgs): imgs = find_recursive(args.imgs) else: imgs = [args.imgs] assert len(imgs), "imgs should be a path to image (.jpg) or directory." cfg.list_test = [{'fpath_img': x} for x in imgs]
def inference_prob( img, device, select_model_option="ade20k-resnet50dilated-ppm_deepsup" ): # select_model_option = "ade20k-mobilenetv2dilated-c1_deepsup" / "ade20k-hrnetv2" '''Load the data and preprocess settings Input: img - the path of our target image device - Current device running select_model_option - name of NN we use ''' cfg_ss.merge_from_file("ss/config/" + select_model_option + ".yaml") logger = setup_logger(distributed_rank=0) # TODO cfg_ss.MODEL.arch_encoder = cfg_ss.MODEL.arch_encoder.lower() cfg_ss.MODEL.arch_decoder = cfg_ss.MODEL.arch_decoder.lower() # absolute paths of model weights cfg_ss.MODEL.weights_encoder = os.path.join( 'ss/' + cfg_ss.DIR, 'encoder_' + cfg_ss.TEST.checkpoint) cfg_ss.MODEL.weights_decoder = os.path.join( 'ss/' + cfg_ss.DIR, 'decoder_' + cfg_ss.TEST.checkpoint) assert os.path.exists(cfg_ss.MODEL.weights_encoder) and os.path.exists( cfg_ss.MODEL.weights_decoder), "checkpoint does not exist!" # generate testing image list imgs = [img] assert len(imgs), "imgs should be a path to image (.jpg) or directory." cfg_ss.list_test = [{'fpath_img': x} for x in imgs] if not os.path.isdir(cfg_ss.TEST.result): os.makedirs(cfg_ss.TEST.result) if torch.cuda.is_available(): torch.cuda.set_device(device) # Network Builders net_encoder = ModelBuilder.build_encoder( arch=cfg_ss.MODEL.arch_encoder, fc_dim=cfg_ss.MODEL.fc_dim, weights=cfg_ss.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg_ss.MODEL.arch_decoder, fc_dim=cfg_ss.MODEL.fc_dim, num_class=cfg_ss.DATASET.num_class, weights=cfg_ss.MODEL.weights_decoder, use_softmax=True) crit = nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) # Dataset and Loader dataset_test = TestDataset(cfg_ss.list_test, cfg_ss.DATASET) loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=cfg_ss.TEST.batch_size, shuffle=False, collate_fn=user_scattered_collate, num_workers=5, drop_last=True) segmentation_module.to(device) # Main loop return segmentation_module, loader_test
"""## Loading the segmentation model Here we load a pretrained segmentation model. Like any pytorch model, we can call it like a function, or examine the parameters in all the layers. After loading, we put it on the GPU. And since we are doing inference, not training, we put the model in eval mode. # Новый раздел """ # Network Builders net_encoder = ModelBuilder.build_encoder(arch='resnet50dilated', fc_dim=2048, weights='ckt/encoder_epoch_20.pth') net_decoder = ModelBuilder.build_decoder(arch='ppm_deepsup', fc_dim=2048, num_class=150, weights='ckt/decoder_epoch_20.pth', use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.eval() segmentation_module.cuda() y = Yandex() """## Load test data Now we load and normalize a single test image. Here we use the commonplace convention of normalizing the image to a scale for which the RGB values of a large photo dataset would have zero mean and unit standard deviation. (These numbers come from the imagenet dataset.) With this normalization, the limiiting ranges of RGB values are within about (-2.2 to +2.7). """ # Load and normalize one image as a singleton tensor batch pil_to_tensor = torchvision.transforms.Compose([
def main(cfg, gpus): # Network Builders net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder.lower(), fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder.lower(), fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder) crit = nn.NLLLoss(ignore_index=-1) if cfg.MODEL.arch_decoder.endswith('deepsup'): segmentation_module = SegmentationModule(net_encoder, net_decoder, crit, cfg.TRAIN.deep_sup_scale) else: segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) # Dataset and Loader dataset_train = TrainDataset(cfg.DATASET.root_dataset, cfg.DATASET.list_train, cfg.DATASET, batch_per_gpu=cfg.TRAIN.batch_size_per_gpu) loader_train = torch.utils.data.DataLoader( dataset_train, batch_size=len(gpus), # we have modified data_parallel shuffle=False, # we do not use this param collate_fn=user_scattered_collate, num_workers=cfg.TRAIN.workers, drop_last=True, pin_memory=True) print('1 Epoch = {} iters'.format(cfg.TRAIN.epoch_iters)) # create loader iterator iterator_train = iter(loader_train) # load nets into gpu print(gpus) # if len(gpus) > 1: if True: segmentation_module = UserScatteredDataParallel(segmentation_module, device_ids=gpus) # For sync bn patch_replication_callback(segmentation_module) segmentation_module.cuda() # Set up optimizers nets = (net_encoder, net_decoder, crit) optimizers = create_optimizers(nets, cfg) # Main loop history = {'train': {'epoch': [], 'loss': [], 'acc': []}} for epoch in range(cfg.TRAIN.start_epoch, cfg.TRAIN.num_epoch): train(segmentation_module, iterator_train, optimizers, history, epoch + 1, cfg) # checkpointing checkpoint(nets, history, cfg, epoch + 1) print('Training Done!')
# fc_dim=2048, # weights='ckpt/ade20k-resnet101-upernet/encoder_epoch_50.pth') # net_decoder = ModelBuilder.build_decoder( # arch='upernet', # fc_dim=2048, # num_class=150, # weights='ckpt/ade20k-resnet101-upernet/decoder_epoch_50.pth', # use_softmax=True) # hrnet net_encoder = ModelBuilder.build_encoder( arch='hrnetv2', fc_dim=720, weights='../../ckpt/ade20k-hrnetv2-c1/encoder_epoch_30.pth') net_decoder = ModelBuilder.build_decoder( arch='c1', fc_dim=720, num_class=150, weights='../../ckpt/ade20k-hrnetv2-c1/decoder_epoch_30.pth', use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.eval() segmentation_module.cuda() pil_to_tensor = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], # These are RGB mean+std values std=[0.229, 0.224, 0.225]) # across a large photo dataset. ]) pil_image = PIL.Image.open('sample.png').convert('RGB')
def main(cfg, gpus): # Network Builders net_encoder = ModelBuilder.build_encoder( arch=cfg.MODEL.arch_encoder.lower(), fc_dim=cfg.MODEL.fc_dim, weights=cfg.MODEL.weights_encoder) net_decoder = ModelBuilder.build_decoder( arch=cfg.MODEL.arch_decoder.lower(), fc_dim=cfg.MODEL.fc_dim, num_class=cfg.DATASET.num_class, weights=cfg.MODEL.weights_decoder) if cfg.MODEL.arch_decoder.endswith('regression'): crit = nn.MSELoss( reduction="sum" ) # Sum for multi-output learning, need to sum across all labels else: crit = nn.NLLLoss(ignore_index=-1) # negative log likelihood loss if cfg.MODEL.arch_decoder.endswith('deepsup'): segmentation_module = SegmentationModule(net_encoder, net_decoder, crit, cfg.DATASET.classes, cfg.TRAIN.deep_sup_scale) else: segmentation_module = SegmentationModule(net_encoder, net_decoder, crit, cfg.DATASET.classes) print("net_encoder") print(type(net_encoder)) print(net_encoder) print("net_decoder") print(type(net_decoder)) print(net_decoder) # Dataset and Loader if cfg.MODEL.arch_decoder.endswith('regression'): print("performing regression") dataset_train = TrainDatasetRegression( cfg.DATASET.root_dataset, cfg.DATASET.list_train, cfg.DATASET.classes, cfg.DATASET, batch_per_gpu=cfg.TRAIN.batch_size_per_gpu) dataset_val = TrainDatasetRegression( cfg.DATASET.root_dataset, cfg.DATASET.list_val, cfg.DATASET.classes, cfg.DATASET, batch_per_gpu=cfg.TRAIN.batch_size_per_gpu) else: dataset_train = TrainDataset( cfg.DATASET.root_dataset, cfg.DATASET.list_train, cfg.DATASET, batch_per_gpu=cfg.TRAIN.batch_size_per_gpu) loader_train = torch.utils.data.DataLoader( dataset_train, batch_size=len(gpus), # we have modified data_parallel shuffle=False, # we do not use this param collate_fn=user_scattered_collate, num_workers=cfg.TRAIN.workers, drop_last=True, pin_memory=True) loader_val = torch.utils.data.DataLoader( dataset_val, batch_size=len(gpus), # we have modified data_parallel shuffle=False, # we do not use this param collate_fn=user_scattered_collate, num_workers=cfg.TRAIN.workers, drop_last=True, pin_memory=True) print('1 Epoch = {} iters'.format(cfg.TRAIN.epoch_iters)) # create loader iterator iterator_train = iter(loader_train) iterator_val = iter(loader_val) # load nets into gpu if len(gpus) > 1: segmentation_module = UserScatteredDataParallel(segmentation_module, device_ids=gpus) # For sync bn patch_replication_callback(segmentation_module) segmentation_module.cuda() # Set up optimizers nets = (net_encoder, net_decoder, crit) optimizers = create_optimizers(nets, cfg) # Main loop history = { 'train': { 'epoch': [], 'loss': [] }, 'val': { 'epoch': [], 'loss': [] } } for epoch in range(cfg.TRAIN.start_epoch, cfg.TRAIN.num_epoch): train(segmentation_module, iterator_train, optimizers, history, epoch + 1, cfg) val(segmentation_module, iterator_val, optimizers, history, epoch + 1, cfg) # checkpointing every 5th epoch if (epoch % 5 == 0): checkpoint(nets, history, cfg, epoch + 1) print('Training Done!')
net_decoder = ModelBuilder.build_decoder( arch='ppm_deepsup', fc_dim=2048, num_class=150, weights='ckpt/ade20k-resnet50dilated-ppm_deepsup/decoder_epoch_20.pth', use_softmax=True) ''' print("parsing {}".format(args.cfg)) model_config, encoder_path, decoder_path = parse_model_config(args.cfg) net_encoder = ModelBuilder.build_encoder( arch = model_config["MODEL"]['arch_encoder'], fc_dim = model_config['MODEL']['fc_dim'], weights = encoder_path) net_decoder = ModelBuilder.build_decoder( arch = model_config["MODEL"]['arch_decoder'], fc_dim = model_config['MODEL']['fc_dim'], num_class = model_config['DATASET']['num_class'], weights = decoder_path, use_softmax=True) crit = torch.nn.NLLLoss(ignore_index=-1) segmentation_module = SegmentationModule(net_encoder, net_decoder, crit) segmentation_module.eval() segmentation_module.cuda() # creating the videocapture object # and reading from the input file # Change it to 0 if reading from webcam ''' if len(sys.argv) > 2: print("Usage: python3 {} <optional mp4_file>".format(sys.argv[0])) exit(1)