예제 #1
0
def test_get_expectation_values_adaptive_factories(factory):
    num_steps = 8
    fac = AdaExpFactory(steps=num_steps, scale_factor=2.0, asymptote=None)
    executor = apply_seed_to_func(f_exp_up, seed=1)

    # Expectation values haven't been computed at any scale factors yet
    assert isinstance(fac.get_expectation_values(), np.ndarray)
    assert len(fac.get_expectation_values()) == 0

    # Compute expectation values at all the scale factors
    fac.run_classical(executor)
    assert isinstance(fac.get_scale_factors(), np.ndarray)

    # Given this seeded executor, the scale factors should be as follows
    correct_scale_factors = np.array(
        [
            1.0,
            2.0,
            4.0,
            4.20469548,
            4.20310693,
            4.2054822,
            4.2031916,
            4.2052843,
        ]
    )
    correct_expectation_values = np.array(
        [executor(scale) for scale in correct_scale_factors]
    )
    assert len(fac.get_expectation_values()) == num_steps
    assert np.allclose(
        fac.get_expectation_values(), correct_expectation_values, atol=1e-3
    )
예제 #2
0
def test_ada_exp_factory_no_asympt_more_steps(test_f: Callable[[float],
                                                               float], ):
    """Test of the adaptive exponential extrapolator."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(steps=8, scale_factor=2.0, asymptote=None)
    fac.run_classical(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)
예제 #3
0
def test_adaptive_factory_max_iteration_warnings():
    """Test that the correct warning is raised beyond the iteration limit."""
    fac = AdaExpFactory(steps=10)
    with warns(
        ConvergenceWarning,
        match=r"Factory iteration loop stopped before convergence.",
    ):
        fac.run_classical(lambda scale_factor: 1.0, max_iterations=3)
예제 #4
0
def test_ada_exp_factory_with_asympt(
    test_f: Callable[[float], float], avoid_log: bool
):
    """Test of the adaptive exponential extrapolator."""
    seeded_f = apply_seed_to_func(test_f, SEED)
    fac = AdaExpFactory(
        steps=3, scale_factor=2.0, asymptote=A, avoid_log=avoid_log
    )
    # Note: run_classical calls next which calls reduce, so calling
    # fac.run_classical with an AdaExpFactory sets the optimal parameters as
    # well. Hence we check that the opt_params are empty before
    # AdaExpFactory.run_classical is called.
    assert not fac._opt_params
    fac.run_classical(seeded_f)
    assert np.isclose(fac.reduce(), seeded_f(0, err=0), atol=CLOSE_TOL)

    # There are three parameters to fit for the (adaptive) exponential ansatz
    assert len(fac._opt_params) == 3