예제 #1
0
    sel = random.randint(0, len(allmoadata) - 1)
    datafiles.append(allmoadata[sel])

# Load OGLE magnitudes for given type of variable star.
oglemags = prep_data.load_ogle(sys.argv[1])

# Load MOA magnitudes contained in datafiles
#moamags_all, moaerrs_all = prep_data.load_nanmags(allmoadata)  # Not enough memory to load all MOA data
moamags, moaerrs = prep_data.load_nanmags(
    datafiles)  # Use random subset instead
#datapoints = mkltcurve.LinkErrs(10)  # Old code: idea was to create a class in order to link errors to magnitude values.
#for n in range(10):  #
#    datapoints.put_meas(moamags[n], moaerrs[n], n)  #
#print datapoints.mag, datapoints.err  #

ogle_hist, ogle_bins = mkltcurve.mk_hist(oglemags, 0.05)
moa_hist, moa_bins = mkltcurve.mk_hist(moamags, 0.01)
#moa_hist2, moa_bins2 = mkltcurve.mk_hist(othermags, 0.05)
moa_mean = mkltcurve.mk_hist_mean(moamags, 0.01)

print '-- Photometry --' + '\n', datafiles
print '# OGLE values:', len(oglemags), 'Range:', str(round(
    min(oglemags), 3)) + '-' + str(round(max(oglemags), 3)), 'Median:', round(
        numpy.median(oglemags), 3), 'Mean:', round(numpy.mean(oglemags), 3)
print '# MOA values:', len(moamags), 'Range:', str(round(
    min(moamags), 3)) + '-' + str(round(max(moamags), 3)), 'Median:', round(
        numpy.median(moamags), 3), 'Mean:', round(numpy.mean(moamags), 3)

corrctn_factor = 2.6

filename = '/projects/uoa00357/moa/training/' + str(sys.argv[1]) + '.arff'
예제 #2
0
        sel = random.randint(0, len(allmoadata) - 1)
        datafiles.append(allmoadata[sel])

    # Load OGLE magnitudes for given type of variable star.
    oglemags = prep_data.load_ogle(sys.argv[1])

    # Load MOA magnitudes contained in datafiles
    #moamags_all, moaerrs_all = prep_data.load_nanmags(allmoadata)  # Not enough memory to load all MOA data
    moamags, moaerrs = prep_data.load_nanmags(
        datafiles)  # Use random subset instead
    #datapoints = mkltcurve.LinkErrs(10)  # Old code: idea was to create a class in order to link errors to magnitude values.
    #for n in range(10):  #
    #    datapoints.put_meas(moamags[n], moaerrs[n], n)  #
    #print datapoints.mag, datapoints.err  #

    moa_hist, moa_bins = mkltcurve.mk_hist(moamags, 0.01)
    #moa_hist2, moa_bins2 = mkltcurve.mk_hist(othermags, 0.05)
    moa_mean = mkltcurve.mk_hist_mean(moamags, 0.01)

    print '-- Photometry --' + '\n', datafiles
    print '# OGLE values:', len(oglemags), 'Range:', str(
        round(min(oglemags), 3)) + '-' + str(round(
            max(oglemags), 3)), 'Median:', round(numpy.median(oglemags),
                                                 3), 'Mean:', round(
                                                     numpy.mean(oglemags), 3)
    print '# MOA values:', len(moamags), 'Range:', str(round(
        min(moamags),
        3)) + '-' + str(round(max(moamags), 3)), 'Median:', round(
            numpy.median(moamags), 3), 'Mean:', round(numpy.mean(moamags), 3)

    mags, errs, times, star_type = mkltcurve.template(str(sys.argv[1]),