from ml.apps.rbm import mnist_rbm_config as cfg import ml.rbm.util as rbmutil from ml.rbm.rbm import RestrictedBoltzmannMachine # numeric overflow handling #np.seterr(all='raise') #gp.acceptable_number_types = 'no nans or infs' # parameters epoch = cfg.epochs - 1 #epoch = 9 use_ruslan = False # load dataset X, TX = rbmutil.load_mnist(False) # load ruslan's training set mdata = scipy.io.loadmat("mnist.mat") X = gp.as_garray(mdata['fbatchdata']) # enter output directory rbmutil.enter_rbm_plot_directory("mnist", cfg.n_hid, cfg.use_pcd, cfg.n_gibbs_steps, "prob.txt", clean=False) # Build RBM rbm = RestrictedBoltzmannMachine(0, cfg.n_vis, cfg.n_hid, 0) # load Ruslan's RBM if use_ruslan: print "Loading Ruslan's ml.rbm..."
import ml.common.util as util import ml.rbm.util as rbmutil from ml.rbm.rbm import RestrictedBoltzmannMachine # numeric overflow handling #np.seterr(all='raise') #gp.acceptable_number_types = 'no nans or infs' # parameters epoch = 14 do_sampling = True # load dataset X, VX, TX = rbmutil.load_mnist() # enter output directory rbmutil.enter_rbm_plot_directory("mnist", cfg.n_hid, cfg.use_pcd, cfg.n_gibbs_steps, clean=False) # Build RBM rbm = RestrictedBoltzmannMachine(0, cfg.n_vis, cfg.n_hid, 0) rbmutil.load_parameters(rbm, "weights-%02i.npz" % epoch) #rbmutil.load_parameters("../../../DeepLearningTutorials/code/rbm_plots/GPU-PCD/weights.npz") #epoch = 99 # calculate statistics seen_epoch_samples = 0 pl_bit = 0 pl_sum = 0