예제 #1
0
    def test_preprocessing_network(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name, values, feature_type=self._feature_type_override(name))
        test_features = NumpyFeatureProcessor.preprocess(
            feature_value_map, normalization_parameters)

        net = core.Net("PreprocessingTestNet")
        C2.set_net(net)
        preprocessor = PreprocessorNet()
        name_preprocessed_blob_map = {}
        for feature_name in feature_value_map:
            workspace.FeedBlob(str(feature_name), np.array([0],
                                                           dtype=np.int32))
            preprocessed_blob, _ = preprocessor.preprocess_blob(
                str(feature_name), [normalization_parameters[feature_name]])
            name_preprocessed_blob_map[feature_name] = preprocessed_blob

        workspace.CreateNet(net)

        for feature_name, feature_value in six.iteritems(feature_value_map):
            feature_value = np.expand_dims(feature_value, -1)
            workspace.FeedBlob(str(feature_name), feature_value)
        workspace.RunNetOnce(net)

        for feature_name in feature_value_map:
            normalized_features = workspace.FetchBlob(
                name_preprocessed_blob_map[feature_name])
            if feature_name != ENUM_FEATURE_ID:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX_FEATURE_ID:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )))
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )),
                "{} does not match: {} {}".format(
                    feature_name,
                    normalized_features[non_matching].tolist(),
                    test_features[feature_name][non_matching].tolist(),
                ),
            )
예제 #2
0
 def _sum_deterministic_policy(self, model_names, path):
     net = core.Net('DeterministicPolicy')
     C2.set_net(net)
     output = 'ActionProbabilities'
     workspace.FeedBlob(output, np.array([1.0]))
     model_outputs = []
     for model in model_names:
         model_output = '{}_Output'.format(model)
         workspace.FeedBlob(model_output, np.array([1.0], dtype=np.float32))
         model_outputs.append(model_output)
     max_action = C2.FlattenToVec(
         C2.ArgMax(C2.Transpose(C2.Sum(*model_outputs)))
     )
     one_blob = C2.NextBlob('one')
     workspace.FeedBlob(one_blob, np.array([1.0], dtype=np.float32))
     C2.net().SparseToDense(
         [
             max_action,
             one_blob,
             model_outputs[0],
         ],
         [output],
     )
     meta = PredictorExportMeta(
         net,
         [one_blob],
         model_outputs,
         [output],
     )
     save_to_db('minidb', path, meta)
예제 #3
0
 def __init__(self, params: PolicyEvaluatorParameters) -> None:
     self.params = params
     self.process_slate_net = core.Net("policy_evaluator")
     C2.set_net(self.process_slate_net)
     self.action_probabilities = PolicySimulator.plan(
         self.process_slate_net, params, self.params.db_type)
     self.created_net = False
     self.value_input_models: Dict[str, ValueInputModelParameters] = {}
     for model in self.params.value_input_models:
         self.value_input_models[model.name] = model
예제 #4
0
    def test_preprocessing_network(self):
        features, feature_value_map = preprocessing_util.read_data()
        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                values)
        test_features = self.preprocess(feature_value_map,
                                        normalization_parameters)

        net = core.Net("PreprocessingTestNet")
        C2.set_net(net)
        preprocessor = PreprocessorNet(net, False)
        for feature_name in feature_value_map:
            workspace.FeedBlob(feature_name, np.array([0], dtype=np.int32))
            preprocessor.preprocess_blob(
                feature_name, [normalization_parameters[feature_name]])

        workspace.CreateNet(net)

        for feature_name, feature_value in six.iteritems(feature_value_map):
            feature_value = np.expand_dims(feature_value, -1)
            workspace.FeedBlob(feature_name, feature_value)
        workspace.RunNetOnce(net)

        for feature_name in feature_value_map:
            normalized_features = workspace.FetchBlob(feature_name +
                                                      "_preprocessed")
            if feature_name != identify_types.ENUM:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )))
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )),
                '{} does not match: {} {}'.format(
                    feature_name, normalized_features[non_matching].tolist(),
                    test_features[feature_name][non_matching].tolist()))
예제 #5
0
 def __init__(
     self,
     params: PolicyEvaluatorParameters,
     db_type: str,
 ) -> None:
     self.params = params
     self.process_slate_net = core.Net('policy_evaluator')
     C2.set_net(self.process_slate_net)
     self.action_probabilities = PolicySimulator.plan(
         self.process_slate_net,
         params,
         db_type,
     )
     self.created_net = False
예제 #6
0
    def test_normalize_dense_matrix_enum(self):
        normalization_parameters = {
            1:
            NormalizationParameters(
                identify_types.ENUM,
                None,
                None,
                None,
                None,
                [12, 4, 2],
                None,
                None,
                None,
            ),
            2:
            NormalizationParameters(identify_types.CONTINUOUS, None, 0, 0, 1,
                                    None, None, None, None),
            3:
            NormalizationParameters(identify_types.ENUM, None, None, None,
                                    None, [15, 3], None, None, None),
        }
        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()

        inputs = np.zeros([4, 3], dtype=np.float32)
        feature_ids = [2, 1, 3]  # Sorted according to feature type
        inputs[:, feature_ids.index(1)] = [12, 4, 2, 2]
        inputs[:, feature_ids.index(2)] = [1.0, 2.0, 3.0, 3.0]
        inputs[:, feature_ids.index(3)] = [
            15, 3, 15, normalization.MISSING_VALUE
        ]
        input_blob = C2.NextBlob("input_blob")
        workspace.FeedBlob(input_blob, np.array([0], dtype=np.float32))
        normalized_output_blob, _ = preprocessor.normalize_dense_matrix(
            input_blob, feature_ids, normalization_parameters, "", False)
        workspace.FeedBlob(input_blob, inputs)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(normalized_output_blob)

        np.testing.assert_allclose(
            np.array([
                [1.0, 1, 0, 0, 1, 0],
                [2.0, 0, 1, 0, 0, 1],
                [3.0, 0, 0, 1, 1, 0],
                [3.0, 0, 0, 1, 0, 0],  # Missing values should go to all 0
            ]),
            normalized_feature_matrix,
        )
예제 #7
0
    def test_normalize_dense_matrix_enum(self):
        normalization_parameters = {
            1: NormalizationParameters(
                identify_types.ENUM,
                None,
                None,
                None,
                None,
                [12, 4, 2],
                None,
                None,
                None,
            ),
            2: NormalizationParameters(
                identify_types.CONTINUOUS, None, 0, 0, 1, None, None, None, None
            ),
            3: NormalizationParameters(
                identify_types.ENUM, None, None, None, None, [15, 3], None, None, None
            ),
        }
        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()

        inputs = np.zeros([4, 3], dtype=np.float32)
        feature_ids = [2, 1, 3]  # Sorted according to feature type
        inputs[:, feature_ids.index(1)] = [12, 4, 2, 2]
        inputs[:, feature_ids.index(2)] = [1.0, 2.0, 3.0, 3.0]
        inputs[:, feature_ids.index(3)] = [15, 3, 15, normalization.MISSING_VALUE]
        input_blob = C2.NextBlob("input_blob")
        workspace.FeedBlob(input_blob, np.array([0], dtype=np.float32))
        normalized_output_blob, _ = preprocessor.normalize_dense_matrix(
            input_blob, feature_ids, normalization_parameters, "", False
        )
        workspace.FeedBlob(input_blob, inputs)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(normalized_output_blob)

        np.testing.assert_allclose(
            np.array(
                [
                    [1.0, 1, 0, 0, 1, 0],
                    [2.0, 0, 1, 0, 0, 1],
                    [3.0, 0, 0, 1, 1, 0],
                    [3.0, 0, 0, 1, 0, 0],  # Missing values should go to all 0
                ]
            ),
            normalized_feature_matrix,
        )
예제 #8
0
 def _dummy_model_copy(self, model_name, path):
     net = core.Net(model_name)
     C2.set_net(net)
     inp = 'Input'
     output = 'Output'
     workspace.FeedBlob(inp, np.array([1.0]))
     workspace.FeedBlob(output, np.array([1.0]))
     net.Copy([inp], [output])
     meta = PredictorExportMeta(
         net,
         [],
         [inp],
         [output],
     )
     save_to_db('minidb', path, meta)
def save_sum_deterministic_policy(model_names, path, db_type):
    net = core.Net("DeterministicPolicy")
    C2.set_net(net)
    output = "ActionProbabilities"
    workspace.FeedBlob(output, np.array([1.0]))
    model_outputs = []
    for model in model_names:
        model_output = "{}_Output".format(model)
        workspace.FeedBlob(model_output, np.array([[1.0]], dtype=np.float32))
        model_outputs.append(model_output)
    max_action = C2.FlattenToVec(C2.ArgMax(C2.Transpose(C2.Sum(*model_outputs))))
    one_blob = C2.NextBlob("one")
    workspace.FeedBlob(one_blob, np.array([1.0], dtype=np.float32))
    C2.net().SparseToDense([max_action, one_blob, model_outputs[0]], [output])
    meta = PredictorExportMeta(net, [one_blob], model_outputs, [output])
    save_to_db(db_type, path, meta)
예제 #10
0
    def preprocess_samples(
        self,
        samples: Samples,
        minibatch_size: int,
        use_gpu: bool = False,
        one_hot_action: bool = True,
        normalize_actions: bool = True,
    ) -> List[TrainingDataPage]:
        logger.info("Shuffling...")
        samples.shuffle()

        logger.info("Sparse2Dense...")
        net = core.Net("gridworld_preprocessing")
        C2.set_net(net)
        saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
        sorted_state_features, _ = sort_features_by_normalization(self.normalization)
        state_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_state_features
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_states, "next_states")
        next_state_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_state_features
        )
        sorted_action_features, _ = sort_features_by_normalization(
            self.normalization_action
        )
        saa = StackedAssociativeArray.from_dict_list(samples.actions, "action")
        action_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_action_features
        )
        saa = StackedAssociativeArray.from_dict_list(
            samples.next_actions, "next_action"
        )
        next_action_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_action_features
        )
        action_probabilities = torch.tensor(
            samples.action_probabilities, dtype=torch.float32
        ).reshape(-1, 1)
        rewards = torch.tensor(samples.rewards, dtype=torch.float32).reshape(-1, 1)

        pnas_lengths_list = []
        pnas_flat: List[List[str]] = []
        for pnas in samples.possible_next_actions:
            pnas_lengths_list.append(len(pnas))
            pnas_flat.extend(pnas)
        saa = StackedAssociativeArray.from_dict_list(pnas_flat, "possible_next_actions")

        pnas_lengths = torch.tensor(pnas_lengths_list, dtype=torch.int32)
        pna_lens_blob = "pna_lens_blob"
        workspace.FeedBlob(pna_lens_blob, pnas_lengths.numpy())

        possible_next_actions_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_action_features
        )

        state_pnas_tile_blob = C2.LengthsTile(next_state_matrix, pna_lens_blob)

        workspace.RunNetOnce(net)

        logger.info("Preprocessing...")
        state_preprocessor = Preprocessor(self.normalization, False)
        action_preprocessor = Preprocessor(self.normalization_action, False)

        states_ndarray = workspace.FetchBlob(state_matrix)
        states_ndarray = state_preprocessor.forward(states_ndarray)

        actions_ndarray = torch.from_numpy(workspace.FetchBlob(action_matrix))
        if normalize_actions:
            actions_ndarray = action_preprocessor.forward(actions_ndarray)

        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        next_states_ndarray = state_preprocessor.forward(next_states_ndarray)

        next_actions_ndarray = torch.from_numpy(workspace.FetchBlob(next_action_matrix))
        if normalize_actions:
            next_actions_ndarray = action_preprocessor.forward(next_actions_ndarray)

        logged_possible_next_actions = action_preprocessor.forward(
            workspace.FetchBlob(possible_next_actions_matrix)
        )

        state_pnas_tile = state_preprocessor.forward(
            workspace.FetchBlob(state_pnas_tile_blob)
        )
        logged_possible_next_state_actions = torch.cat(
            (state_pnas_tile, logged_possible_next_actions), dim=1
        )

        logger.info("Reward Timeline to Torch...")
        possible_next_actions_ndarray = logged_possible_next_actions
        possible_next_actions_state_concat = logged_possible_next_state_actions
        time_diffs = torch.ones([len(samples.states), 1])

        tdps = []
        pnas_start = 0
        logger.info("Batching...")
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            pnas_end = pnas_start + torch.sum(pnas_lengths[start:end])
            pnas = possible_next_actions_ndarray[pnas_start:pnas_end]
            pnas_concat = possible_next_actions_state_concat[pnas_start:pnas_end]
            pnas_start = pnas_end
            tdp = TrainingDataPage(
                states=states_ndarray[start:end],
                actions=actions_ndarray[start:end],
                propensities=action_probabilities[start:end],
                rewards=rewards[start:end],
                next_states=next_states_ndarray[start:end],
                next_actions=next_actions_ndarray[start:end],
                possible_next_actions=None,
                not_terminals=(pnas_lengths[start:end] > 0).reshape(-1, 1),
                time_diffs=time_diffs[start:end],
                possible_next_actions_lengths=pnas_lengths[start:end],
                possible_next_actions_state_concat=pnas_concat,
            )
            tdp.set_type(torch.cuda.FloatTensor if use_gpu else torch.FloatTensor)
            tdps.append(tdp)
        return tdps
    def preprocess_samples(
        self,
        samples: Samples,
        minibatch_size: int,
        use_gpu: bool = False,
        one_hot_action: bool = True,
        normalize_actions: bool = True,
    ) -> List[TrainingDataPage]:
        logger.info("Shuffling...")
        samples = shuffle_samples(samples)

        logger.info("Sparse2Dense...")
        net = core.Net("gridworld_preprocessing")
        C2.set_net(net)
        sorted_state_features, _ = sort_features_by_normalization(
            self.normalization)
        sorted_action_features, _ = sort_features_by_normalization(
            self.normalization_action)
        state_sparse_to_dense_processor = Caffe2SparseToDenseProcessor(
            sorted_state_features)
        action_sparse_to_dense_processor = Caffe2SparseToDenseProcessor(
            sorted_action_features)
        saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
        state_matrix, state_matrix_presence, _ = state_sparse_to_dense_processor(
            saa)
        saa = StackedAssociativeArray.from_dict_list(samples.next_states,
                                                     "next_states")
        next_state_matrix, next_state_matrix_presence, _ = state_sparse_to_dense_processor(
            saa)
        saa = StackedAssociativeArray.from_dict_list(  # type: ignore
            samples.actions, "action")
        action_matrix, action_matrix_presence, _ = action_sparse_to_dense_processor(
            saa)
        saa = StackedAssociativeArray.from_dict_list(  # type: ignore
            samples.next_actions, "next_action")
        next_action_matrix, next_action_matrix_presence, _ = action_sparse_to_dense_processor(
            saa)
        action_probabilities = torch.tensor(samples.action_probabilities,
                                            dtype=torch.float32).reshape(
                                                -1, 1)
        rewards = torch.tensor(samples.rewards,
                               dtype=torch.float32).reshape(-1, 1)

        max_action_size = 4

        pnas_mask_list: List[List[int]] = []
        pnas_flat: List[Dict[str, float]] = []
        for pnas in samples.possible_next_actions:
            pnas_mask_list.append([1] * len(pnas) + [0] *
                                  (max_action_size - len(pnas)))
            pnas_flat.extend(pnas)  # type: ignore
            for _ in range(max_action_size - len(pnas)):
                pnas_flat.append({})  # Filler
        saa = StackedAssociativeArray.from_dict_list(  # type: ignore
            pnas_flat, "possible_next_actions")
        pnas_mask = torch.Tensor(pnas_mask_list)

        possible_next_actions_matrix, possible_next_actions_matrix_presence, _ = action_sparse_to_dense_processor(
            saa)

        workspace.RunNetOnce(net)

        logger.info("Preprocessing...")
        state_preprocessor = Preprocessor(self.normalization, False)
        action_preprocessor = Preprocessor(self.normalization_action, False)

        states_ndarray = state_preprocessor(
            torch.from_numpy(workspace.FetchBlob(state_matrix)),
            torch.from_numpy(
                workspace.FetchBlob(state_matrix_presence)).float(),
        )

        if normalize_actions:
            actions_ndarray = action_preprocessor(
                torch.from_numpy(workspace.FetchBlob(action_matrix)),
                torch.from_numpy(
                    workspace.FetchBlob(action_matrix_presence)).float(),
            )
        else:
            actions_ndarray = torch.from_numpy(
                workspace.FetchBlob(action_matrix))

        next_states_ndarray = torch.from_numpy(
            workspace.FetchBlob(next_state_matrix))
        next_states_ndarray = state_preprocessor(
            next_states_ndarray,
            (next_states_ndarray != MISSING_VALUE).float())

        state_pnas_tile = next_states_ndarray.repeat(
            1, max_action_size).reshape(-1, next_states_ndarray.shape[1])

        if normalize_actions:
            next_actions_ndarray = action_preprocessor(
                torch.from_numpy(workspace.FetchBlob(next_action_matrix)),
                torch.from_numpy(
                    workspace.FetchBlob(next_action_matrix_presence)).float(),
            )
        else:
            next_actions_ndarray = torch.from_numpy(
                workspace.FetchBlob(next_action_matrix))

        if normalize_actions:
            logged_possible_next_actions = action_preprocessor(
                torch.from_numpy(
                    workspace.FetchBlob(possible_next_actions_matrix)),
                torch.from_numpy(
                    workspace.FetchBlob(
                        possible_next_actions_matrix_presence)).float(),
            )
        else:
            logged_possible_next_actions = torch.from_numpy(
                workspace.FetchBlob(possible_next_actions_matrix))

        assert state_pnas_tile.shape[0] == logged_possible_next_actions.shape[
            0], ("Invalid shapes: " + str(state_pnas_tile.shape) + " != " +
                 str(logged_possible_next_actions.shape))
        logged_possible_next_state_actions = torch.cat(
            (state_pnas_tile, logged_possible_next_actions), dim=1)

        logger.info("Reward Timeline to Torch...")
        time_diffs = torch.ones([len(samples.states), 1])

        tdps = []
        pnas_start = 0
        logger.info("Batching...")
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            pnas_end = pnas_start + (minibatch_size * max_action_size)
            tdp = TrainingDataPage(
                states=states_ndarray[start:end],
                actions=actions_ndarray[start:end],
                propensities=action_probabilities[start:end],
                rewards=rewards[start:end],
                next_states=next_states_ndarray[start:end],
                next_actions=next_actions_ndarray[start:end],
                not_terminal=(pnas_mask[start:end, :].sum(dim=1, keepdim=True)
                              > 0),
                time_diffs=time_diffs[start:end],
                possible_next_actions_mask=pnas_mask[start:end, :],
                possible_next_actions_state_concat=
                logged_possible_next_state_actions[pnas_start:pnas_end, :],
            )
            pnas_start = pnas_end
            tdp.set_type(torch.cuda.FloatTensor if use_gpu else torch.
                         FloatTensor  # type: ignore
                         )
            tdps.append(tdp)
        return tdps
예제 #12
0
    def preprocess_samples_discrete(
            self, samples: Samples,
            minibatch_size: int) -> List[TrainingDataPage]:
        samples.shuffle()

        net = core.Net("gridworld_preprocessing")
        C2.set_net(net)
        preprocessor = PreprocessorNet(True)
        saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
        state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "state_norm",
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_states,
                                                     "next_states")
        next_state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "next_state_norm",
            False,
            False,
        )
        workspace.RunNetOnce(net)
        actions_one_hot = np.zeros(
            [len(samples.actions), len(self.ACTIONS)], dtype=np.float32)
        for i, action in enumerate(samples.actions):
            actions_one_hot[i, self.action_to_index(action)] = 1
        rewards = np.array(samples.rewards, dtype=np.float32).reshape(-1, 1)
        propensities = np.array(samples.propensities,
                                dtype=np.float32).reshape(-1, 1)
        next_actions_one_hot = np.zeros(
            [len(samples.next_actions),
             len(self.ACTIONS)], dtype=np.float32)
        for i, action in enumerate(samples.next_actions):
            if action == "":
                continue
            next_actions_one_hot[i, self.action_to_index(action)] = 1
        possible_next_actions_mask = []
        for pna in samples.possible_next_actions:
            pna_mask = [0] * self.num_actions
            for action in pna:
                pna_mask[self.action_to_index(action)] = 1
            possible_next_actions_mask.append(pna_mask)
        possible_next_actions_mask = np.array(possible_next_actions_mask,
                                              dtype=np.float32)
        is_terminals = np.array(samples.is_terminal,
                                dtype=np.bool).reshape(-1, 1)
        not_terminals = np.logical_not(is_terminals)
        if samples.reward_timelines is not None:
            reward_timelines = np.array(samples.reward_timelines,
                                        dtype=np.object)

        states_ndarray = workspace.FetchBlob(state_matrix)
        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        tdps = []
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            tdps.append(
                TrainingDataPage(
                    states=states_ndarray[start:end],
                    actions=actions_one_hot[start:end],
                    propensities=propensities[start:end],
                    rewards=rewards[start:end],
                    next_states=next_states_ndarray[start:end],
                    not_terminals=not_terminals[start:end],
                    next_actions=next_actions_one_hot[start:end],
                    possible_next_actions=possible_next_actions_mask[
                        start:end],
                    reward_timelines=reward_timelines[start:end]
                    if reward_timelines is not None else None,
                ))
        return tdps
예제 #13
0
    def preprocess_samples(self, samples: Samples,
                           minibatch_size: int) -> List[TrainingDataPage]:
        samples.shuffle()

        net = core.Net("gridworld_preprocessing")
        C2.set_net(net)
        preprocessor = PreprocessorNet(True)
        saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
        state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "state_norm",
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_states,
                                                     "next_states")
        next_state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "next_state_norm",
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.actions, "action")
        action_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            "action_norm",
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_actions,
                                                     "next_action")
        next_action_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            "next_action_norm",
            False,
            False,
        )
        propensities = np.array(samples.propensities,
                                dtype=np.float32).reshape(-1, 1)
        rewards = np.array(samples.rewards, dtype=np.float32).reshape(-1, 1)

        pnas_lengths_list = []
        pnas_flat: List[List[str]] = []
        for pnas in samples.possible_next_actions:
            pnas_lengths_list.append(len(pnas))
            pnas_flat.extend(pnas)
        saa = StackedAssociativeArray.from_dict_list(pnas_flat,
                                                     "possible_next_actions")
        pnas_lengths = np.array(pnas_lengths_list, dtype=np.int32)
        possible_next_actions_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            "possible_next_action_norm",
            False,
            False,
        )
        workspace.RunNetOnce(net)

        states_ndarray = workspace.FetchBlob(state_matrix)
        actions_ndarray = workspace.FetchBlob(action_matrix)
        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        next_actions_ndarray = workspace.FetchBlob(next_action_matrix)
        possible_next_actions_ndarray = workspace.FetchBlob(
            possible_next_actions_matrix)
        tdps = []
        pnas_start = 0
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            pnas_end = pnas_start + np.sum(pnas_lengths[start:end])
            pnas = possible_next_actions_ndarray[pnas_start:pnas_end]
            pnas_start = pnas_end
            tdps.append(
                TrainingDataPage(
                    states=states_ndarray[start:end],
                    actions=actions_ndarray[start:end],
                    propensities=propensities[start:end],
                    rewards=rewards[start:end],
                    next_states=next_states_ndarray[start:end],
                    next_actions=next_actions_ndarray[start:end],
                    possible_next_actions=StackedArray(pnas_lengths[start:end],
                                                       pnas),
                    not_terminals=(pnas_lengths[start:end] > 0).reshape(-1, 1),
                    reward_timelines=samples.reward_timelines[start:end]
                    if samples.reward_timelines else None,
                ))
        return tdps
예제 #14
0
    def preprocess_samples_discrete(
        self,
        samples: Samples,
        minibatch_size: int,
        one_hot_action: bool = True,
        use_gpu: bool = False,
        do_shuffle: bool = True,
    ) -> List[TrainingDataPage]:

        if do_shuffle:
            logger.info("Shuffling...")
            samples = shuffle_samples(samples)

        logger.info("Preprocessing...")
        sparse_to_dense_processor = Caffe2SparseToDenseProcessor()

        if self.sparse_to_dense_net is None:
            self.sparse_to_dense_net = core.Net("gridworld_sparse_to_dense")
            C2.set_net(self.sparse_to_dense_net)
            saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
            sorted_features, _ = sort_features_by_normalization(self.normalization)
            self.state_matrix, _ = sparse_to_dense_processor(sorted_features, saa)
            saa = StackedAssociativeArray.from_dict_list(
                samples.next_states, "next_states"
            )
            self.next_state_matrix, _ = sparse_to_dense_processor(sorted_features, saa)
            C2.set_net(None)
        else:
            StackedAssociativeArray.from_dict_list(samples.states, "states")
            StackedAssociativeArray.from_dict_list(samples.next_states, "next_states")
        workspace.RunNetOnce(self.sparse_to_dense_net)

        logger.info("Converting to Torch...")
        actions_one_hot = torch.tensor(
            (np.array(samples.actions).reshape(-1, 1) == np.array(self.ACTIONS)).astype(
                np.int64
            )
        )
        actions = actions_one_hot.argmax(dim=1, keepdim=True)
        rewards = torch.tensor(samples.rewards, dtype=torch.float32).reshape(-1, 1)
        action_probabilities = torch.tensor(
            samples.action_probabilities, dtype=torch.float32
        ).reshape(-1, 1)
        next_actions_one_hot = torch.tensor(
            (
                np.array(samples.next_actions).reshape(-1, 1) == np.array(self.ACTIONS)
            ).astype(np.int64)
        )
        logger.info("Converting PA to Torch...")
        possible_action_strings = np.array(
            list(itertools.zip_longest(*samples.possible_actions, fillvalue=""))
        ).T
        possible_actions_mask = torch.zeros([len(samples.actions), len(self.ACTIONS)])
        for i, action in enumerate(self.ACTIONS):
            possible_actions_mask[:, i] = torch.tensor(
                np.max(possible_action_strings == action, axis=1).astype(np.int64)
            )
        logger.info("Converting PNA to Torch...")
        possible_next_action_strings = np.array(
            list(itertools.zip_longest(*samples.possible_next_actions, fillvalue=""))
        ).T
        possible_next_actions_mask = torch.zeros(
            [len(samples.next_actions), len(self.ACTIONS)]
        )
        for i, action in enumerate(self.ACTIONS):
            possible_next_actions_mask[:, i] = torch.tensor(
                np.max(possible_next_action_strings == action, axis=1).astype(np.int64)
            )
        terminals = torch.tensor(samples.terminals, dtype=torch.int32).reshape(-1, 1)
        not_terminal = 1 - terminals
        logger.info("Converting RT to Torch...")

        time_diffs = torch.ones([len(samples.states), 1])

        logger.info("Preprocessing...")
        preprocessor = Preprocessor(self.normalization, False)

        states_ndarray = workspace.FetchBlob(self.state_matrix)
        states_ndarray = preprocessor.forward(states_ndarray)

        next_states_ndarray = workspace.FetchBlob(self.next_state_matrix)
        next_states_ndarray = preprocessor.forward(next_states_ndarray)

        logger.info("Batching...")
        tdps = []
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            tdp = TrainingDataPage(
                states=states_ndarray[start:end],
                actions=actions_one_hot[start:end]
                if one_hot_action
                else actions[start:end],
                propensities=action_probabilities[start:end],
                rewards=rewards[start:end],
                next_states=next_states_ndarray[start:end],
                not_terminal=not_terminal[start:end],
                next_actions=next_actions_one_hot[start:end],
                possible_actions_mask=possible_actions_mask[start:end],
                possible_next_actions_mask=possible_next_actions_mask[start:end],
                time_diffs=time_diffs[start:end],
            )
            tdp.set_type(torch.cuda.FloatTensor if use_gpu else torch.FloatTensor)
            tdps.append(tdp)
        return tdps
예제 #15
0
    def preprocess_samples(self, samples: Samples,
                           minibatch_size: int) -> List[TrainingDataPage]:
        samples.shuffle()

        net = core.Net("gridworld_preprocessing")
        C2.set_net(net)
        preprocessor = PreprocessorNet(True)
        saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
        state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "state_norm",
            False,
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_states,
                                                     "next_states")
        next_state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "next_state_norm",
            False,
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.actions, "action")
        action_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            "action_norm",
            False,
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_actions,
                                                     "next_action")
        next_action_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            "next_action_norm",
            False,
            False,
            False,
        )
        propensities = np.array(samples.propensities,
                                dtype=np.float32).reshape(-1, 1)
        rewards = np.array(samples.rewards, dtype=np.float32).reshape(-1, 1)

        pnas_lengths_list = []
        pnas_flat: List[List[str]] = []
        for pnas in samples.possible_next_actions:
            pnas_lengths_list.append(len(pnas))
            pnas_flat.extend(pnas)
        saa = StackedAssociativeArray.from_dict_list(pnas_flat,
                                                     "possible_next_actions")

        pnas_lengths = np.array(pnas_lengths_list, dtype=np.int32)
        pna_lens_blob = "pna_lens_blob"
        workspace.FeedBlob(pna_lens_blob, pnas_lengths)

        possible_next_actions_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            "possible_next_action_norm",
            False,
            False,
            False,
        )

        state_pnas_tile_blob = C2.LengthsTile(next_state_matrix, pna_lens_blob)

        workspace.RunNetOnce(net)

        state_preprocessor = Preprocessor(self.normalization, False)
        action_preprocessor = Preprocessor(self.normalization_action, False)

        states_ndarray = workspace.FetchBlob(state_matrix)
        states_ndarray = state_preprocessor.forward(states_ndarray).numpy()

        actions_ndarray = workspace.FetchBlob(action_matrix)
        actions_ndarray = action_preprocessor.forward(actions_ndarray).numpy()

        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        next_states_ndarray = state_preprocessor.forward(
            next_states_ndarray).numpy()

        next_actions_ndarray = workspace.FetchBlob(next_action_matrix)
        next_actions_ndarray = action_preprocessor.forward(
            next_actions_ndarray).numpy()

        logged_possible_next_actions = action_preprocessor.forward(
            workspace.FetchBlob(possible_next_actions_matrix))

        state_pnas_tile = state_preprocessor.forward(
            workspace.FetchBlob(state_pnas_tile_blob))
        logged_possible_next_state_actions = torch.cat(
            (state_pnas_tile, logged_possible_next_actions), dim=1)

        possible_next_actions_ndarray = logged_possible_next_actions.cpu(
        ).numpy()
        next_state_pnas_concat = logged_possible_next_state_actions.cpu(
        ).numpy()
        time_diffs = np.ones(len(states_ndarray))
        episode_values = None
        if samples.reward_timelines is not None:
            episode_values = np.zeros(rewards.shape, dtype=np.float32)
            for i, reward_timeline in enumerate(samples.reward_timelines):
                for time_diff, reward in reward_timeline.items():
                    episode_values[i, 0] += reward * (DISCOUNT**time_diff)

        tdps = []
        pnas_start = 0
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            pnas_end = pnas_start + np.sum(pnas_lengths[start:end])
            pnas = possible_next_actions_ndarray[pnas_start:pnas_end]
            pnas_concat = next_state_pnas_concat[pnas_start:pnas_end]
            pnas_start = pnas_end
            tdps.append(
                TrainingDataPage(
                    states=states_ndarray[start:end],
                    actions=actions_ndarray[start:end],
                    propensities=propensities[start:end],
                    rewards=rewards[start:end],
                    next_states=next_states_ndarray[start:end],
                    next_actions=next_actions_ndarray[start:end],
                    possible_next_actions=StackedArray(pnas_lengths[start:end],
                                                       pnas),
                    not_terminals=(pnas_lengths[start:end] > 0).reshape(-1, 1),
                    episode_values=episode_values[start:end]
                    if episode_values is not None else None,
                    time_diffs=time_diffs[start:end],
                    possible_next_actions_lengths=pnas_lengths[start:end],
                    next_state_pnas_concat=pnas_concat,
                ))
        return tdps
예제 #16
0
def benchmark(num_forward_passes):
    """
    Benchmark preprocessor speeds:
        1 - PyTorch
        2 - PyTorch -> ONNX -> C2
        3 - C2
    """

    feature_value_map = gen_data(
        num_binary_features=10,
        num_boxcox_features=10,
        num_continuous_features=10,
        num_enum_features=10,
        num_prob_features=10,
        num_quantile_features=10,
    )

    normalization_parameters = {}
    for name, values in feature_value_map.items():
        normalization_parameters[name] = normalization.identify_parameter(
            name, values, 10
        )

    sorted_features, _ = sort_features_by_normalization(normalization_parameters)

    # Dummy input
    input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)

    # PyTorch Preprocessor
    pytorch_preprocessor = Preprocessor(normalization_parameters, False)
    for i, feature in enumerate(sorted_features):
        input_matrix[:, i] = feature_value_map[feature]

    #################### time pytorch ############################
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        _ = pytorch_preprocessor.forward(input_matrix)
    end = time.time()
    logger.info(
        "PyTorch: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    ################ time pytorch -> ONNX -> caffe2 ####################
    buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
        pytorch_preprocessor, len(sorted_features), False
    )
    input_blob, output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
        buffer
    )
    torch_workspace = caffe2_netdef.workspace
    parameters = torch_workspace.Blobs()
    for blob_str in parameters:
        workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
    torch_init_net = core.Net(caffe2_netdef.init_net)
    torch_predict_net = core.Net(caffe2_netdef.predict_net)
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_blob, input_matrix)
    workspace.RunNetOnce(torch_init_net)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(torch_predict_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "PyTorch -> ONNX -> Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    #################### time caffe2 ############################
    norm_net = core.Net("net")
    C2.set_net(norm_net)
    preprocessor = PreprocessorNet()
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
    output_blob, _ = preprocessor.normalize_dense_matrix(
        input_matrix_blob, sorted_features, normalization_parameters, "", False
    )
    workspace.FeedBlob(input_matrix_blob, input_matrix)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(norm_net)
        workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )
예제 #17
0
    def preprocess_samples_discrete(
        self,
        states: List[Dict[int, float]],
        actions: List[str],
        rewards: List[float],
        next_states: List[Dict[int, float]],
        next_actions: List[str],
        is_terminals: List[bool],
        possible_next_actions: List[List[str]],
        reward_timelines: Optional[List[Dict[int, float]]],
        minibatch_size: int,
    ) -> List[TrainingDataPage]:
        # Shuffle
        if reward_timelines is None:
            merged = list(
                zip(states, actions, rewards, next_states, next_actions,
                    is_terminals, possible_next_actions))
            random.shuffle(merged)
            states, actions, rewards, next_states, next_actions, \
                is_terminals, possible_next_actions = zip(*merged)
        else:
            merged = list(
                zip(states, actions, rewards, next_states, next_actions,
                    is_terminals, possible_next_actions, reward_timelines))
            random.shuffle(merged)
            states, actions, rewards, next_states, next_actions, \
                is_terminals, possible_next_actions, reward_timelines = zip(*merged)

        net = core.Net('gridworld_preprocessing')
        C2.set_net(net)
        preprocessor = PreprocessorNet(net, True)
        saa = StackedAssociativeArray.from_dict_list(states, 'states')
        state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            'state_norm',
        )
        saa = StackedAssociativeArray.from_dict_list(next_states,
                                                     'next_states')
        next_state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            'next_state_norm',
        )
        workspace.RunNetOnce(net)
        actions_one_hot = np.zeros(
            [len(actions), len(self.ACTIONS)], dtype=np.float32)
        for i, action in enumerate(actions):
            actions_one_hot[i, self.ACTIONS.index(action)] = 1
        rewards = np.array(rewards, dtype=np.float32).reshape(-1, 1)
        next_actions_one_hot = np.zeros(
            [len(next_actions), len(self.ACTIONS)], dtype=np.float32)
        for i, action in enumerate(next_actions):
            if action == '':
                continue
            next_actions_one_hot[i, self.ACTIONS.index(action)] = 1
        possible_next_actions_mask = []
        for pna in possible_next_actions:
            pna_mask = [0] * self.num_actions
            for action in pna:
                pna_mask[self.ACTIONS.index(action)] = 1
            possible_next_actions_mask.append(pna_mask)
        possible_next_actions_mask = np.array(possible_next_actions_mask,
                                              dtype=np.float32)
        is_terminals = np.array(is_terminals, dtype=np.bool).reshape(-1, 1)
        not_terminals = np.logical_not(is_terminals)
        if reward_timelines is not None:
            reward_timelines = np.array(reward_timelines, dtype=np.object)

        states_ndarray = workspace.FetchBlob(state_matrix)
        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        tdps = []
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            tdps.append(
                TrainingDataPage(
                    states=states_ndarray[start:end],
                    actions=actions_one_hot[start:end],
                    rewards=rewards[start:end],
                    next_states=next_states_ndarray[start:end],
                    not_terminals=not_terminals[start:end],
                    next_actions=next_actions_one_hot[start:end],
                    possible_next_actions=possible_next_actions_mask[
                        start:end],
                    reward_timelines=reward_timelines[start:end]
                    if reward_timelines is not None else None,
                ))
        return tdps
예제 #18
0
    def preprocess_samples(
        self,
        states: List[Dict[int, float]],
        actions: List[Dict[int, float]],
        rewards: List[float],
        next_states: List[Dict[int, float]],
        next_actions: List[Dict[int, float]],
        is_terminals: List[bool],
        possible_next_actions: List[List[Dict[int, float]]],
        reward_timelines: List[Dict[int, float]],
        minibatch_size: int,
    ) -> List[TrainingDataPage]:
        # Shuffle
        merged = list(
            zip(states, actions, rewards, next_states, next_actions,
                is_terminals, possible_next_actions, reward_timelines))
        random.shuffle(merged)
        states, actions, rewards, next_states, next_actions, is_terminals, \
            possible_next_actions, reward_timelines = zip(*merged)

        net = core.Net('gridworld_preprocessing')
        C2.set_net(net)
        preprocessor = PreprocessorNet(net, True)
        saa = StackedAssociativeArray.from_dict_list(states, 'states')
        state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            'state_norm',
        )
        saa = StackedAssociativeArray.from_dict_list(next_states,
                                                     'next_states')
        next_state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            'next_state_norm',
        )
        saa = StackedAssociativeArray.from_dict_list(actions, 'action')
        action_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            'action_norm',
        )
        saa = StackedAssociativeArray.from_dict_list(next_actions,
                                                     'next_action')
        next_action_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            'next_action_norm',
        )
        rewards = np.array(rewards, dtype=np.float32).reshape(-1, 1)

        pnas_lengths_list = []
        pnas_flat = []
        for pnas in possible_next_actions:
            pnas_lengths_list.append(len(pnas))
            pnas_flat.extend(pnas)
        saa = StackedAssociativeArray.from_dict_list(pnas_flat,
                                                     'possible_next_actions')
        pnas_lengths = np.array(pnas_lengths_list, dtype=np.int32)
        possible_next_actions_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization_action,
            'possible_next_action_norm',
        )
        workspace.RunNetOnce(net)

        states_ndarray = workspace.FetchBlob(state_matrix)
        actions_ndarray = workspace.FetchBlob(action_matrix)
        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        next_actions_ndarray = workspace.FetchBlob(next_action_matrix)
        possible_next_actions_ndarray = workspace.FetchBlob(
            possible_next_actions_matrix)
        tdps = []
        pnas_start = 0
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            pnas_end = pnas_start + np.sum(pnas_lengths[start:end])
            pnas = possible_next_actions_ndarray[pnas_start:pnas_end]
            pnas_start = pnas_end
            tdps.append(
                TrainingDataPage(
                    states=states_ndarray[start:end],
                    actions=actions_ndarray[start:end],
                    rewards=rewards[start:end],
                    next_states=next_states_ndarray[start:end],
                    next_actions=next_actions_ndarray[start:end],
                    possible_next_actions=StackedArray(pnas_lengths[start:end],
                                                       pnas),
                    not_terminals=(pnas_lengths[start:end] > 0).reshape(-1, 1),
                    reward_timelines=reward_timelines[start:end]
                    if reward_timelines else None,
                ))
        return tdps
예제 #19
0
def benchmark(num_forward_passes):
    """
    Benchmark preprocessor speeds:
        1 - PyTorch
        2 - PyTorch -> ONNX -> C2
        3 - C2
    """

    feature_value_map = gen_data(
        num_binary_features=10,
        num_boxcox_features=10,
        num_continuous_features=10,
        num_enum_features=10,
        num_prob_features=10,
        num_quantile_features=10,
    )

    normalization_parameters = {}
    for name, values in feature_value_map.items():
        normalization_parameters[name] = normalization.identify_parameter(
            name, values, 10
        )

    sorted_features, _ = sort_features_by_normalization(normalization_parameters)

    # Dummy input
    input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)

    # PyTorch Preprocessor
    pytorch_preprocessor = Preprocessor(normalization_parameters, False)
    for i, feature in enumerate(sorted_features):
        input_matrix[:, i] = feature_value_map[feature]

    #################### time pytorch ############################
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        _ = pytorch_preprocessor.forward(input_matrix)
    end = time.time()
    logger.info(
        "PyTorch: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    ################ time pytorch -> ONNX -> caffe2 ####################
    buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
        pytorch_preprocessor, len(sorted_features), False
    )
    input_blob, output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
        buffer
    )
    torch_workspace = caffe2_netdef.workspace
    parameters = torch_workspace.Blobs()
    for blob_str in parameters:
        workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
    torch_init_net = core.Net(caffe2_netdef.init_net)
    torch_predict_net = core.Net(caffe2_netdef.predict_net)
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_blob, input_matrix)
    workspace.RunNetOnce(torch_init_net)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(torch_predict_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "PyTorch -> ONNX -> Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    #################### time caffe2 ############################
    norm_net = core.Net("net")
    C2.set_net(norm_net)
    preprocessor = PreprocessorNet()
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
    output_blob, _ = preprocessor.normalize_dense_matrix(
        input_matrix_blob, sorted_features, normalization_parameters, "", False
    )
    workspace.FeedBlob(input_matrix_blob, input_matrix)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(norm_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )
예제 #20
0
    def preprocess_samples(
        self,
        samples: Samples,
        minibatch_size: int,
        use_gpu: bool = False,
        one_hot_action: bool = True,
        normalize_actions: bool = True,
    ) -> List[TrainingDataPage]:
        logger.info("Shuffling...")
        samples = shuffle_samples(samples)

        logger.info("Sparse2Dense...")
        net = core.Net("gridworld_preprocessing")
        C2.set_net(net)
        saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
        sorted_state_features, _ = sort_features_by_normalization(self.normalization)
        state_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_state_features
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_states, "next_states")
        next_state_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_state_features
        )
        sorted_action_features, _ = sort_features_by_normalization(
            self.normalization_action
        )
        saa = StackedAssociativeArray.from_dict_list(samples.actions, "action")
        action_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_action_features
        )
        saa = StackedAssociativeArray.from_dict_list(
            samples.next_actions, "next_action"
        )
        next_action_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_action_features
        )
        action_probabilities = torch.tensor(
            samples.action_probabilities, dtype=torch.float32
        ).reshape(-1, 1)
        rewards = torch.tensor(samples.rewards, dtype=torch.float32).reshape(-1, 1)

        max_action_size = 4

        pnas_mask_list: List[List[int]] = []
        pnas_flat: List[Dict[str, float]] = []
        for pnas in samples.possible_next_actions:
            pnas_mask_list.append([1] * len(pnas) + [0] * (max_action_size - len(pnas)))
            pnas_flat.extend(pnas)
            for _ in range(max_action_size - len(pnas)):
                pnas_flat.append({})  # Filler
        saa = StackedAssociativeArray.from_dict_list(pnas_flat, "possible_next_actions")
        pnas_mask = torch.Tensor(pnas_mask_list)

        possible_next_actions_matrix, _ = sparse_to_dense(
            saa.lengths, saa.keys, saa.values, sorted_action_features
        )

        workspace.RunNetOnce(net)

        logger.info("Preprocessing...")
        state_preprocessor = Preprocessor(self.normalization, False)
        action_preprocessor = Preprocessor(self.normalization_action, False)

        states_ndarray = workspace.FetchBlob(state_matrix)
        states_ndarray = state_preprocessor.forward(states_ndarray)

        actions_ndarray = torch.from_numpy(workspace.FetchBlob(action_matrix))
        if normalize_actions:
            actions_ndarray = action_preprocessor.forward(actions_ndarray)

        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        next_states_ndarray = state_preprocessor.forward(next_states_ndarray)

        state_pnas_tile = next_states_ndarray.repeat(1, max_action_size).reshape(
            -1, next_states_ndarray.shape[1]
        )

        next_actions_ndarray = torch.from_numpy(workspace.FetchBlob(next_action_matrix))
        if normalize_actions:
            next_actions_ndarray = action_preprocessor.forward(next_actions_ndarray)

        logged_possible_next_actions = action_preprocessor.forward(
            workspace.FetchBlob(possible_next_actions_matrix)
        )

        assert state_pnas_tile.shape[0] == logged_possible_next_actions.shape[0], (
            "Invalid shapes: "
            + str(state_pnas_tile.shape)
            + " != "
            + str(logged_possible_next_actions.shape)
        )
        logged_possible_next_state_actions = torch.cat(
            (state_pnas_tile, logged_possible_next_actions), dim=1
        )

        logger.info("Reward Timeline to Torch...")
        time_diffs = torch.ones([len(samples.states), 1])

        tdps = []
        pnas_start = 0
        logger.info("Batching...")
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            pnas_end = pnas_start + (minibatch_size * max_action_size)
            tdp = TrainingDataPage(
                states=states_ndarray[start:end],
                actions=actions_ndarray[start:end],
                propensities=action_probabilities[start:end],
                rewards=rewards[start:end],
                next_states=next_states_ndarray[start:end],
                next_actions=next_actions_ndarray[start:end],
                not_terminal=(pnas_mask[start:end, :].sum(dim=1, keepdim=True) > 0),
                time_diffs=time_diffs[start:end],
                possible_next_actions_mask=pnas_mask[start:end, :],
                possible_next_actions_state_concat=logged_possible_next_state_actions[
                    pnas_start:pnas_end, :
                ],
            )
            pnas_start = pnas_end
            tdp.set_type(torch.cuda.FloatTensor if use_gpu else torch.FloatTensor)
            tdps.append(tdp)
        return tdps
예제 #21
0
    def preprocess_samples_discrete(
        self,
        samples: Samples,
        minibatch_size: int,
        one_hot_action: bool = True,
        use_gpu: bool = False,
    ) -> List[TrainingDataPage]:
        logger.info("Shuffling...")
        samples = shuffle_samples(samples)
        logger.info("Preprocessing...")

        if self.sparse_to_dense_net is None:
            self.sparse_to_dense_net = core.Net("gridworld_sparse_to_dense")
            C2.set_net(self.sparse_to_dense_net)
            saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
            sorted_features, _ = sort_features_by_normalization(self.normalization)
            self.state_matrix, _ = sparse_to_dense(
                saa.lengths, saa.keys, saa.values, sorted_features
            )
            saa = StackedAssociativeArray.from_dict_list(
                samples.next_states, "next_states"
            )
            self.next_state_matrix, _ = sparse_to_dense(
                saa.lengths, saa.keys, saa.values, sorted_features
            )
            C2.set_net(None)
        else:
            StackedAssociativeArray.from_dict_list(samples.states, "states")
            StackedAssociativeArray.from_dict_list(samples.next_states, "next_states")
        workspace.RunNetOnce(self.sparse_to_dense_net)

        logger.info("Converting to Torch...")
        actions_one_hot = torch.tensor(
            (np.array(samples.actions).reshape(-1, 1) == np.array(self.ACTIONS)).astype(
                np.int64
            )
        )
        actions = actions_one_hot.argmax(dim=1, keepdim=True)
        rewards = torch.tensor(samples.rewards, dtype=torch.float32).reshape(-1, 1)
        action_probabilities = torch.tensor(
            samples.action_probabilities, dtype=torch.float32
        ).reshape(-1, 1)
        next_actions_one_hot = torch.tensor(
            (
                np.array(samples.next_actions).reshape(-1, 1) == np.array(self.ACTIONS)
            ).astype(np.int64)
        )
        logger.info("Converting PA to Torch...")
        possible_action_strings = np.array(
            list(itertools.zip_longest(*samples.possible_actions, fillvalue=""))
        ).T
        possible_actions_mask = torch.zeros([len(samples.actions), len(self.ACTIONS)])
        for i, action in enumerate(self.ACTIONS):
            possible_actions_mask[:, i] = torch.tensor(
                np.max(possible_action_strings == action, axis=1).astype(np.int64)
            )
        logger.info("Converting PNA to Torch...")
        possible_next_action_strings = np.array(
            list(itertools.zip_longest(*samples.possible_next_actions, fillvalue=""))
        ).T
        possible_next_actions_mask = torch.zeros(
            [len(samples.next_actions), len(self.ACTIONS)]
        )
        for i, action in enumerate(self.ACTIONS):
            possible_next_actions_mask[:, i] = torch.tensor(
                np.max(possible_next_action_strings == action, axis=1).astype(np.int64)
            )
        terminals = torch.tensor(samples.terminals, dtype=torch.int32).reshape(-1, 1)
        not_terminal = 1 - terminals
        logger.info("Converting RT to Torch...")

        time_diffs = torch.ones([len(samples.states), 1])

        logger.info("Preprocessing...")
        preprocessor = Preprocessor(self.normalization, False)

        states_ndarray = workspace.FetchBlob(self.state_matrix)
        states_ndarray = preprocessor.forward(states_ndarray)

        next_states_ndarray = workspace.FetchBlob(self.next_state_matrix)
        next_states_ndarray = preprocessor.forward(next_states_ndarray)

        logger.info("Batching...")
        tdps = []
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            tdp = TrainingDataPage(
                states=states_ndarray[start:end],
                actions=actions_one_hot[start:end]
                if one_hot_action
                else actions[start:end],
                propensities=action_probabilities[start:end],
                rewards=rewards[start:end],
                next_states=next_states_ndarray[start:end],
                not_terminal=not_terminal[start:end],
                next_actions=next_actions_one_hot[start:end],
                possible_actions_mask=possible_actions_mask[start:end],
                possible_next_actions_mask=possible_next_actions_mask[start:end],
                time_diffs=time_diffs[start:end],
            )
            tdp.set_type(torch.cuda.FloatTensor if use_gpu else torch.FloatTensor)
            tdps.append(tdp)
        return tdps
예제 #22
0
    def test_prepare_normalization_and_normalize(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name,
                values,
                10,
                feature_type=self._feature_type_override(name))
        for k, v in normalization_parameters.items():
            if id_to_type(k) == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif id_to_type(k) == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == id_to_type(k)
        sorted_features, _ = sort_features_by_normalization(
            normalization_parameters)

        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()
        input_matrix = np.zeros([10000, len(sorted_features)],
                                dtype=np.float32)
        for i, feature in enumerate(sorted_features):
            input_matrix[:, i] = feature_value_map[feature]
        input_matrix_blob = "input_matrix_blob"
        workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
        output_blob, _ = preprocessor.normalize_dense_matrix(
            input_matrix_blob, sorted_features, normalization_parameters, "",
            False)
        workspace.FeedBlob(input_matrix_blob, input_matrix)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(output_blob)

        normalized_features = {}
        on_column = 0
        for feature in sorted_features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[
                feature] = normalized_feature_matrix[:,
                                                     on_column:(on_column +
                                                                column_size)]
            on_column += column_size

        self.assertTrue(
            all([
                np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                for parameter in normalization_parameters.values()
            ]))
        for k, v in six.iteritems(normalized_features):
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0),
                                       np.less(sigmoidv, 1))))
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    self.assertEqual(possible_value_map[original_feature],
                                     np.where(row == 1)[0][0])
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = NumpyFeatureProcessor.value_to_quantile(
                        original_feature,
                        normalization_parameters[k].quantiles)
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif (feature_type == identify_types.CONTINUOUS
                  or feature_type == identify_types.BOXCOX):
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    "mean of feature {} is {}, not 0".format(k, np.mean(v)),
                )
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            elif feature_type == identify_types.CONTINUOUS_ACTION:
                less_than_max = v < 1
                more_than_min = v > -1
                self.assertTrue(
                    np.all(less_than_max),
                    "values are not less than 1: {}".format(
                        v[less_than_max == False]),
                )
                self.assertTrue(
                    np.all(more_than_min),
                    "values are not more than -1: {}".format(
                        v[more_than_min == False]),
                )
            else:
                raise NotImplementedError()
예제 #23
0
    def test_preprocessing_network(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name, values, feature_type=self._feature_type_override(name)
            )
        test_features = NumpyFeatureProcessor.preprocess(
            feature_value_map, normalization_parameters
        )

        net = core.Net("PreprocessingTestNet")
        C2.set_net(net)
        preprocessor = PreprocessorNet()
        name_preprocessed_blob_map = {}
        for feature_name in feature_value_map:
            workspace.FeedBlob(str(feature_name), np.array([0], dtype=np.int32))
            preprocessed_blob, _ = preprocessor.preprocess_blob(
                str(feature_name), [normalization_parameters[feature_name]]
            )
            name_preprocessed_blob_map[feature_name] = preprocessed_blob

        workspace.CreateNet(net)

        for feature_name, feature_value in six.iteritems(feature_value_map):
            feature_value = np.expand_dims(feature_value, -1)
            workspace.FeedBlob(str(feature_name), feature_value)
        workspace.RunNetOnce(net)

        for feature_name in feature_value_map:
            normalized_features = workspace.FetchBlob(
                name_preprocessed_blob_map[feature_name]
            )
            if feature_name != ENUM_FEATURE_ID:
                normalized_features = np.squeeze(normalized_features, -1)

            tolerance = 0.01
            if feature_name == BOXCOX_FEATURE_ID:
                # At the limit, boxcox has some numerical instability
                tolerance = 0.5
            non_matching = np.where(
                np.logical_not(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )
                )
            )
            self.assertTrue(
                np.all(
                    np.isclose(
                        normalized_features,
                        test_features[feature_name],
                        rtol=tolerance,
                        atol=tolerance,
                    )
                ),
                "{} does not match: {} {}".format(
                    feature_name,
                    normalized_features[non_matching].tolist(),
                    test_features[feature_name][non_matching].tolist(),
                ),
            )
예제 #24
0
    def preprocess_samples_discrete(
            self,
            samples: Samples,
            minibatch_size: int,
            one_hot_action: bool = True) -> List[TrainingDataPage]:
        logger.info("Shuffling...")
        samples.shuffle()
        logger.info("Preprocessing...")

        net = core.Net("gridworld_preprocessing")
        C2.set_net(net)
        preprocessor = PreprocessorNet(True)
        saa = StackedAssociativeArray.from_dict_list(samples.states, "states")
        state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "state_norm",
            False,
            False,
            False,
        )
        saa = StackedAssociativeArray.from_dict_list(samples.next_states,
                                                     "next_states")
        next_state_matrix, _ = preprocessor.normalize_sparse_matrix(
            saa.lengths,
            saa.keys,
            saa.values,
            self.normalization,
            "next_state_norm",
            False,
            False,
            False,
        )
        workspace.RunNetOnce(net)

        logger.info("Converting to Torch...")
        actions_one_hot = torch.tensor((np.array(samples.actions).reshape(
            -1, 1) == np.array(self.ACTIONS)).astype(np.int64))
        actions = actions_one_hot.argmax(dim=1, keepdim=True)
        rewards = torch.tensor(samples.rewards,
                               dtype=torch.float32).reshape(-1, 1)
        action_probabilities = torch.tensor(samples.action_probabilities,
                                            dtype=torch.float32).reshape(
                                                -1, 1)
        next_actions_one_hot = torch.tensor(
            (np.array(samples.next_actions).reshape(-1, 1) == np.array(
                self.ACTIONS)).astype(np.int64))
        logger.info("Converting PNA to Torch...")
        possible_next_action_strings = np.array(
            list(
                itertools.zip_longest(*samples.possible_next_actions,
                                      fillvalue=""))).T
        possible_next_actions_mask = torch.zeros(
            [len(samples.next_actions),
             len(self.ACTIONS)])
        for i, action in enumerate(self.ACTIONS):
            possible_next_actions_mask[:, i] = torch.tensor(
                np.max(possible_next_action_strings == action,
                       axis=1).astype(np.int64))
        terminals = torch.tensor(samples.terminals,
                                 dtype=torch.int32).reshape(-1, 1)
        not_terminals = 1 - terminals
        episode_values = None
        logger.info("Converting RT to Torch...")
        episode_values = torch.tensor(samples.episode_values,
                                      dtype=torch.float32).reshape(-1, 1)

        time_diffs = torch.ones([len(samples.states), 1])

        logger.info("Preprocessing...")
        preprocessor = Preprocessor(self.normalization, False)

        states_ndarray = workspace.FetchBlob(state_matrix)
        states_ndarray = preprocessor.forward(states_ndarray)

        next_states_ndarray = workspace.FetchBlob(next_state_matrix)
        next_states_ndarray = preprocessor.forward(next_states_ndarray)

        logger.info("Batching...")
        tdps = []
        for start in range(0, states_ndarray.shape[0], minibatch_size):
            end = start + minibatch_size
            if end > states_ndarray.shape[0]:
                break
            tdp = TrainingDataPage(
                states=states_ndarray[start:end],
                actions=actions_one_hot[start:end]
                if one_hot_action else actions[start:end],
                propensities=action_probabilities[start:end],
                rewards=rewards[start:end],
                next_states=next_states_ndarray[start:end],
                not_terminals=not_terminals[start:end],
                next_actions=next_actions_one_hot[start:end],
                possible_next_actions=possible_next_actions_mask[start:end],
                episode_values=episode_values[start:end]
                if episode_values is not None else None,
                time_diffs=time_diffs[start:end],
            )
            tdp.set_type(torch.FloatTensor)
            tdps.append(tdp)
        return tdps
예제 #25
0
    def test_prepare_normalization_and_normalize(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name, values, 10, feature_type=self._feature_type_override(name)
            )
        for k, v in normalization_parameters.items():
            if id_to_type(k) == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif id_to_type(k) == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == id_to_type(k)
        sorted_features, _ = sort_features_by_normalization(normalization_parameters)

        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()
        input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)
        for i, feature in enumerate(sorted_features):
            input_matrix[:, i] = feature_value_map[feature]
        input_matrix_blob = "input_matrix_blob"
        workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
        output_blob, _ = preprocessor.normalize_dense_matrix(
            input_matrix_blob, sorted_features, normalization_parameters, "", False
        )
        workspace.FeedBlob(input_matrix_blob, input_matrix)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(output_blob)

        normalized_features = {}
        on_column = 0
        for feature in sorted_features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[feature] = normalized_feature_matrix[
                :, on_column : (on_column + column_size)
            ]
            on_column += column_size

        self.assertTrue(
            all(
                [
                    np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                    for parameter in normalization_parameters.values()
                ]
            )
        )
        for k, v in six.iteritems(normalized_features):
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0), np.less(sigmoidv, 1))
                    )
                )
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    self.assertEqual(
                        possible_value_map[original_feature], np.where(row == 1)[0][0]
                    )
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = NumpyFeatureProcessor.value_to_quantile(
                        original_feature, normalization_parameters[k].quantiles
                    )
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif (
                feature_type == identify_types.CONTINUOUS
                or feature_type == identify_types.BOXCOX
            ):
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    "mean of feature {} is {}, not 0".format(k, np.mean(v)),
                )
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            elif feature_type == identify_types.CONTINUOUS_ACTION:
                less_than_max = v < 1
                more_than_min = v > -1
                self.assertTrue(
                    np.all(less_than_max),
                    "values are not less than 1: {}".format(v[less_than_max == False]),
                )
                self.assertTrue(
                    np.all(more_than_min),
                    "values are not more than -1: {}".format(v[more_than_min == False]),
                )
            else:
                raise NotImplementedError()