예제 #1
0
 def test_cyclic_tri2_lr(self):
     """Test a triangular2 cyclic learning rate"""
     gold = [0.1,0.28000003,0.45999995,0.64000005,0.81999993,1.0,0.81999993,0.64000005,0.45999995,0.28000003,0.1,
             0.19000003,0.28000003,0.36999995,0.45999995,0.55,0.45999995,0.36999995,0.28000003,0.19000003,0.1,
             0.14499995,0.19000003,0.23499998,0.28000003]
     lrs = cyclic_learning_rate.Triangular2CyclicalLearningRate(
         initial_learning_rate=0.1,
         maximal_learning_rate=1.0,
         step_size=5,
     )
     scheduler = [lrs(i) for i in range(25)]
     self.assertTrue(self.compare_lr_values(scheduler, gold))
예제 #2
0
 def test_cyclic_tri2_lr(self):
     """Test a triangular2 cyclic learning rate"""
     gold = [0.1, 0.28000003, 0.45999995, 0.64000005, 0.81999993, 1.0, 0.81999993, 0.64000005, 0.45999995, 0.28000003, 0.1,
             0.19000003, 0.28000003, 0.36999995, 0.45999995, 0.55, 0.45999995, 0.36999995, 0.28000003, 0.19000003, 0.1,
             0.14499995, 0.19000003, 0.23499998, 0.28000003]
     lrs = cyclic_learning_rate.Triangular2CyclicalLearningRate(
         initial_learning_rate=0.1,
         maximal_learning_rate=1.0,
         step_size=5,
     )
     for i in range(25):
         assert round(float(lrs(i).numpy()), 5) == round(gold[i], 5)
예제 #3
0
def choose_scheduler(model_config):
    """
    Define the optimizer used for training the RelevanceModel
    Users have the option to define an ExponentialDecay learning rate schedule

    Parameters
    ----------
    model_config : dict
        model configuration doctionary

    Returns
    -------
    tensorflow learning rate scheduler

    Notes
    -----
    References:
        https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Optimizer
        https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay
        https://arxiv.org/pdf/1506.01186.pdf
    """

    if 'lr_schedule' not in model_config:
        # use constant lr schedule
        learning_rate_schedule = ExponentialDecay(
            initial_learning_rate=OptimizerDefaultValues.CONSTANT_LR,
            decay_steps=10000000,
            decay_rate=1.0,
        )

    else:
        lr_schedule = model_config['lr_schedule']
        lr_schedule_key = lr_schedule['key']

        if lr_schedule_key == LearningRateScheduleKey.EXPONENTIAL:
            learning_rate_schedule = ExponentialDecay(
                initial_learning_rate=lr_schedule.get(
                    'learning_rate', OptimizerDefaultValues.CONSTANT_LR),
                decay_steps=lr_schedule.get(
                    'learning_rate_decay_steps',
                    OptimizerDefaultValues.EXP_DECAY_STEPS),
                decay_rate=lr_schedule.get(
                    'learning_rate_decay',
                    OptimizerDefaultValues.EXP_DECAY_RATE),
                staircase=True,
            )

        elif lr_schedule_key == LearningRateScheduleKey.CONSTANT:
            learning_rate_schedule = ExponentialDecay(
                initial_learning_rate=lr_schedule.get(
                    'learning_rate', OptimizerDefaultValues.CONSTANT_LR),
                decay_steps=10000000,
                decay_rate=1.0,
            )
        elif lr_schedule_key == LearningRateScheduleKey.REDUCE_LR_ON_PLATEAU:
            learning_rate_schedule = lr_schedule.get(
                'learning_rate', OptimizerDefaultValues.CONSTANT_LR)

        elif lr_schedule_key == LearningRateScheduleKey.CYCLIC:
            lr_schedule_type = lr_schedule['type']
            if lr_schedule_type == CyclicLearningRateType.TRIANGULAR:
                learning_rate_schedule = cyclic_learning_rate.TriangularCyclicalLearningRate(
                    initial_learning_rate=lr_schedule.get(
                        'initial_learning_rate',
                        OptimizerDefaultValues.CYCLIC_INITIAL_LEARNING_RATE),
                    maximal_learning_rate=lr_schedule.get(
                        'maximal_learning_rate',
                        OptimizerDefaultValues.CYCLIC_MAXIMAL_LEARNING_RATE),
                    step_size=lr_schedule.get(
                        'step_size', OptimizerDefaultValues.CYCLIC_STEP_SIZE),
                )
            elif lr_schedule_type == CyclicLearningRateType.TRIANGULAR2:
                learning_rate_schedule = cyclic_learning_rate.Triangular2CyclicalLearningRate(
                    initial_learning_rate=lr_schedule.get(
                        'initial_learning_rate',
                        OptimizerDefaultValues.CYCLIC_INITIAL_LEARNING_RATE),
                    maximal_learning_rate=lr_schedule.get(
                        'maximal_learning_rate',
                        OptimizerDefaultValues.CYCLIC_MAXIMAL_LEARNING_RATE),
                    step_size=lr_schedule.get(
                        'step_size', OptimizerDefaultValues.CYCLIC_STEP_SIZE),
                )
            elif lr_schedule_type == CyclicLearningRateType.EXPONENTIAL:
                learning_rate_schedule = cyclic_learning_rate.ExponentialCyclicalLearningRate(
                    initial_learning_rate=lr_schedule.get(
                        'initial_learning_rate',
                        OptimizerDefaultValues.CYCLIC_INITIAL_LEARNING_RATE),
                    maximal_learning_rate=lr_schedule.get(
                        'maximal_learning_rate',
                        OptimizerDefaultValues.CYCLIC_MAXIMAL_LEARNING_RATE),
                    step_size=lr_schedule.get(
                        'step_size', OptimizerDefaultValues.CYCLIC_STEP_SIZE),
                    gamma=lr_schedule.get('gamma',
                                          OptimizerDefaultValues.CYCLIC_GAMMA),
                )
            else:
                raise ValueError(
                    "Unsupported cyclic learning rate schedule type key: " +
                    lr_schedule_type)
        else:
            raise ValueError("Unsupported learning rate schedule key: " +
                             lr_schedule_key)

    return learning_rate_schedule
예제 #4
0
def choose_scheduler(model_config):
    """
        Define the optimizer used for training the RelevanceModel
        Users have the option to define an ExponentialDecay learning rate schedule

        Parameters
        ----------
            model_config : dict
                model configuration doctionary

        Returns
        -------
            tensorflow learning rate scheduler

        Notes
        -----
        References:
            https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Optimizer
            https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay
            https://arxiv.org/pdf/1506.01186.pdf
        """

    if 'lr_schedule' not in model_config:
        #use constant lr schedule
        learning_rate_schedule = ExponentialDecay(
            initial_learning_rate=0.01,
            decay_steps=10000000,
            decay_rate=1.0,
        )

    else:
        lr_schedule = model_config['lr_schedule']
        lr_schedule_key = lr_schedule['key']

        if lr_schedule_key == LearningRateScheduleKey.EXPONENTIAL:
            learning_rate_schedule = ExponentialDecay(
                initial_learning_rate=lr_schedule['learning_rate']
                if 'learning_rate' in lr_schedule else 0.01,
                decay_steps=lr_schedule['learning_rate_decay_steps']
                if 'learning_rate_decay_steps' in lr_schedule else 100000,
                decay_rate=lr_schedule['learning_rate_decay']
                if 'learning_rate_decay' in lr_schedule else 0.96,
                staircase=True,
            )

        elif lr_schedule_key == LearningRateScheduleKey.CONSTANT:
            learning_rate_schedule = ExponentialDecay(
                initial_learning_rate=lr_schedule['learning_rate']
                if 'learning_rate' in lr_schedule else 0.01,
                decay_steps=10000000,
                decay_rate=1.0,
            )

        elif lr_schedule_key == LearningRateScheduleKey.CYCLIC:
            lr_schedule_type = lr_schedule['type']
            if lr_schedule_type == CyclicLearningRateType.TRIANGULAR:
                learning_rate_schedule = cyclic_learning_rate.TriangularCyclicalLearningRate(
                    initial_learning_rate=lr_schedule['initial_learning_rate']
                    if 'initial_learning_rate' in lr_schedule else 0.001,
                    maximal_learning_rate=lr_schedule['maximal_learning_rate']
                    if 'maximal_learning_rate' in lr_schedule else 0.01,
                    step_size=lr_schedule['step_size']
                    if 'step_size' in lr_schedule else 10,
                )
            elif lr_schedule_type == CyclicLearningRateType.TRIANGULAR2:
                learning_rate_schedule = cyclic_learning_rate.Triangular2CyclicalLearningRate(
                    initial_learning_rate=lr_schedule['initial_learning_rate']
                    if 'initial_learning_rate' in lr_schedule else 0.001,
                    maximal_learning_rate=lr_schedule['maximal_learning_rate']
                    if 'maximal_learning_rate' in lr_schedule else 0.01,
                    step_size=lr_schedule['step_size']
                    if 'step_size' in lr_schedule else 10,
                )
            elif lr_schedule_type == CyclicLearningRateType.EXPONENTIAL:
                learning_rate_schedule = cyclic_learning_rate.ExponentialCyclicalLearningRate(
                    initial_learning_rate=lr_schedule['initial_learning_rate']
                    if 'initial_learning_rate' in lr_schedule else 0.001,
                    maximal_learning_rate=lr_schedule['maximal_learning_rate']
                    if 'maximal_learning_rate' in lr_schedule else 0.01,
                    step_size=lr_schedule['step_size']
                    if 'step_size' in lr_schedule else 10,
                    gamma=lr_schedule['gamma']
                    if 'gamma' in lr_schedule else 1.0,
                )
            else:
                raise ValueError(
                    "Unsupported cyclic learning rate schedule type key: " +
                    lr_schedule_type)
        else:
            raise ValueError("Unsupported learning rate schedule key: " +
                             lr_schedule_key)

    return learning_rate_schedule