cv_score_av = round(
    np.mean(cross_val_score(ml_10_svm, x_10, y_10, cv=skf)) * 100, 1)
print('Cross-Validation Accuracy Score ML10: ', cv_score_av, '%\n')

cv_score_av = round(
    np.mean(cross_val_score(ml_5_svm, x_5, y_5, cv=skf)) * 100, 1)
print('Cross-Validation Accuracy Score ML5: ', cv_score_av, '%\n')

# ---------- PREDICTION PROBABILITY PLOTS ----------

if pred_prob_plot_df10:
    fig = pred_proba_plot(ml_10_svm,
                          x_10,
                          y_10,
                          no_iter=50,
                          no_bins=35,
                          x_min=0.3,
                          classifier='Support Vector Machine (ml_10)')
    if save_pred_prob_plot_df10:
        fig.savefig('figures/ml_10_svm_pred_proba.png')

if pred_prob_plot_df5:
    fig = pred_proba_plot(ml_5_svm,
                          x_5,
                          y_5,
                          no_iter=50,
                          no_bins=35,
                          x_min=0.3,
                          classifier='Support Vector Machine (ml_5)')
    if save_pred_prob_plot_df5:
예제 #2
0
cv_score_av = round(
    np.mean(cross_val_score(ml_10_rand_forest, x_10, y_10, cv=skf)) * 100, 1)
print('Cross-Validation Accuracy Score ML10: ', cv_score_av, '%\n')

cv_score_av = round(
    np.mean(cross_val_score(ml_5_rand_forest, x_5, y_5, cv=skf)) * 100, 1)
print('Cross-Validation Accuracy Score ML5: ', cv_score_av, '%\n')

# ---------- PREDICTION PROBABILITY PLOTS ----------

if pred_prob_plot_df10:
    fig = pred_proba_plot(ml_10_rand_forest,
                          x_10,
                          y_10,
                          no_iter=50,
                          no_bins=36,
                          x_min=0.3,
                          classifier='Random Forest (ml_10)')
    if save_pred_prob_plot_df10:
        fig.savefig('figures/ml_10_random_forest_pred_proba.png')

if pred_prob_plot_df5:
    fig = pred_proba_plot(ml_5_rand_forest,
                          x_5,
                          y_5,
                          no_iter=50,
                          no_bins=35,
                          x_min=0.3,
                          classifier='Random Forest (ml_5)')
    if save_pred_prob_plot_df5:
예제 #3
0
cv_score_av = round(
    np.mean(cross_val_score(ml_10_knn, x_10, y_10, cv=skf)) * 100, 1)
print('Cross-Validation Accuracy Score ML10: ', cv_score_av, '%\n')

cv_score_av = round(
    np.mean(cross_val_score(ml_5_knn, x_5, y_5, cv=skf)) * 100, 1)
print('Cross-Validation Accuracy Score ML5: ', cv_score_av, '%\n')

# ---------- PREDICTION PROBABILITY PLOTS ----------

if pred_prob_plot_df10:
    fig = pred_proba_plot(ml_10_knn,
                          x_10,
                          y_10,
                          no_iter=50,
                          no_bins=18,
                          x_min=0.3,
                          classifier='Nearest Neighbor (ml_10)')
    if save_pred_prob_plot_df10:
        fig.savefig('figures/ml_10_nearest_neighbor_pred_proba.png')

if pred_prob_plot_df5:
    fig = pred_proba_plot(ml_5_knn,
                          x_5,
                          y_5,
                          no_iter=50,
                          no_bins=18,
                          x_min=0.3,
                          classifier='Nearest Neighbor (ml_5)')
    if save_pred_prob_plot_df10: