def train_pipeline(training_pipeline_params: Params): # train, val data logger.info(f"start train pipeline with params {training_pipeline_params}") data = read_data(training_pipeline_params.train_data_path) logger.info(f"data.shape is {data.shape}") train_df, val_df = split_train_val_data( data, training_pipeline_params.splitting_params) logger.info(f"train_df.shape is {train_df.shape}") logger.info(f"val_df.shape is {val_df.shape}") # features extraction train_target = extract_target(train_df, training_pipeline_params.feature_params) transformer = Features_transformer(training_pipeline_params.feature_params) transformer.fit( train_df.drop( columns=training_pipeline_params.feature_params.target_col)) train_features = make_features( transformer, train_df.drop( columns=training_pipeline_params.feature_params.target_col)) logger.info(f"train_features.shape is {train_features.shape}") val_target = extract_target(val_df, training_pipeline_params.feature_params) val_features = make_features( transformer, val_df.drop( columns=training_pipeline_params.feature_params.target_col)) logger.info(f"val_features.shape is {val_features.shape}") # train and score model = train_model(train_features, train_target, training_pipeline_params.train_params) predicts = predict_model(model, val_features) metrics = evaluate_model(predicts, val_target) logger.info(f"metrics is {metrics}") # save path_to_feature_transformer = serialize_features_transformer( transformer, training_pipeline_params.features_transformer_path) path_to_model = serialize_model(model, training_pipeline_params.model_path) path_to_metrics = serialize_metrics(metrics, training_pipeline_params.metric_path) logger.info(f"transformer, model and metrics were saved") return path_to_feature_transformer, path_to_model, path_to_metrics, metrics
def test_make_features(): transformer = ColumnTransformer([("norm1", Normalizer(norm='l1'), [0, 1]), ("norm2", Normalizer(norm='l1'), slice(2, 4))]) data_df = pd.DataFrame([[0., 1., 2., 2.], [1., 1., 0., 1.]]) transformer.fit(data_df) result_df = pd.DataFrame([[0., 1., 0.5, 0.5], [0.5, 0.5, 0., 1.]]) df_features = make_features(transformer, data_df) assert df_features.values.tolist() == result_df.values.tolist()
def predict(predict_config): test_df = read_data(to_absolute_path(predict_config.test_data_path)) test_df = test_df.drop(predict_config.feature_params.target_col, axis=1) model_path = to_absolute_path(predict_config.output_model_path) model = load_model(model_path) transformer = load_transformer( to_absolute_path(predict_config.feature_transformer_path)) test_features = make_features(transformer, test_df) y_pred = pd.DataFrame(model.predict_proba(test_features)[:, 1], columns=["target"]) y_pred.to_csv(to_absolute_path(predict_config.predict_path), index=False)
def inference_pipeline(inference_pipeline_params: Params): # train, val data logger.info(f"start inference pipeline with params {inference_pipeline_params.inference_params}") data = read_data(inference_pipeline_params.inference_params.source_data_path) logger.info(f"data.shape is {data.shape}") # features extraction transformer = load_transformer(inference_pipeline_params.features_transformer_path) data_features = make_features(transformer, data) logger.info(f"data_features.shape is {data.shape}") # predict model = load_model(inference_pipeline_params.model_path) predicts = predict_model(model, data_features) logger.info(f"predicts shape is {predicts.shape}") # save path_to_predics = save_predicts(data, predicts, inference_pipeline_params.inference_params.result_data_path) logger.info(f"predicted data was saved") return path_to_predics, predicts
def inference_pipeline(data: pd.DataFrame, transformer: Features_transformer, model: SklearnClassificationModel): data_features = make_features(transformer, data) data['predicted_class'] = model.predict(data_features) return data[['predicted_class']].to_json(orient='index')