def save_checkpoint(self, behavior_name: str, step: int) -> str: if not os.path.exists(self.model_path): os.makedirs(self.model_path) checkpoint_path = os.path.join(self.model_path, f"{behavior_name}-{step}") state_dict = { name: module.state_dict() for name, module in self.modules.items() } torch.save(state_dict, f"{checkpoint_path}.pt") torch.save(state_dict, os.path.join(self.model_path, "checkpoint.pt")) self.export(checkpoint_path, behavior_name) return checkpoint_path
def save_checkpoint(self, behavior_name: str, step: int) -> Tuple[str, List[str]]: if not os.path.exists(self.model_path): os.makedirs(self.model_path) checkpoint_path = os.path.join(self.model_path, f"{behavior_name}-{step}") state_dict = { name: module.state_dict() for name, module in self.modules.items() } pytorch_ckpt_path = f"{checkpoint_path}.pt" export_ckpt_path = f"{checkpoint_path}.onnx" torch.save(state_dict, f"{checkpoint_path}.pt") torch.save(state_dict, os.path.join(self.model_path, "checkpoint.pt")) self.export(checkpoint_path, behavior_name) return export_ckpt_path, [pytorch_ckpt_path]