def create_model_saver(framework: str, trainer_settings: TrainerSettings, model_path: str, load: bool) -> BaseModelSaver: if framework == FrameworkType.PYTORCH: model_saver = TorchModelSaver( # type: ignore trainer_settings, model_path, load) else: model_saver = TFModelSaver( # type: ignore trainer_settings, model_path, load) return model_saver
def test_version_compare(self): # Test write_stats with self.assertLogs("mlagents.trainers", level="WARNING") as cm: trainer_params = TrainerSettings() mock_path = tempfile.mkdtemp() policy = create_policy_mock(trainer_params) model_saver = TFModelSaver(trainer_params, mock_path) model_saver.register(policy) model_saver._check_model_version( "0.0.0") # This is not the right version for sure # Assert that 1 warning has been thrown with incorrect version assert len(cm.output) == 1 model_saver._check_model_version( __version__) # This should be the right version # Assert that no additional warnings have been thrown wth correct ver assert len(cm.output) == 1
def test_register(tmp_path): trainer_params = TrainerSettings() model_saver = TFModelSaver(trainer_params, tmp_path) opt = mock.Mock(spec=PPOOptimizer) model_saver.register(opt) assert model_saver.policy is None trainer_params = TrainerSettings() policy = create_policy_mock(trainer_params) model_saver.register(policy) assert model_saver.policy is not None
def test_checkpoint_conversion(tmpdir, rnn, visual, discrete): tf.reset_default_graph() dummy_config = TrainerSettings() model_path = os.path.join(tmpdir, "Mock_Brain") policy = create_policy_mock( dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual ) trainer_params = TrainerSettings() model_saver = TFModelSaver(trainer_params, model_path) model_saver.register(policy) model_saver.save_checkpoint("Mock_Brain", 100) assert os.path.isfile(model_path + "/Mock_Brain-100.nn")
def test_load_save(tmp_path): path1 = os.path.join(tmp_path, "runid1") path2 = os.path.join(tmp_path, "runid2") trainer_params = TrainerSettings() policy = create_policy_mock(trainer_params) model_saver = TFModelSaver(trainer_params, path1) model_saver.register(policy) model_saver.initialize_or_load(policy) policy.set_step(2000) mock_brain_name = "MockBrain" model_saver.save_checkpoint(mock_brain_name, 2000) assert len(os.listdir(tmp_path)) > 0 # Try load from this path model_saver = TFModelSaver(trainer_params, path1, load=True) policy2 = create_policy_mock(trainer_params) model_saver.register(policy2) model_saver.initialize_or_load(policy2) _compare_two_policies(policy, policy2) assert policy2.get_current_step() == 2000 # Try initialize from path 1 trainer_params.init_path = path1 model_saver = TFModelSaver(trainer_params, path2) policy3 = create_policy_mock(trainer_params) model_saver.register(policy3) model_saver.initialize_or_load(policy3) _compare_two_policies(policy2, policy3) # Assert that the steps are 0. assert policy3.get_current_step() == 0
def test_normalizer_after_load(tmp_path): behavior_spec = mb.setup_test_behavior_specs(use_discrete=True, use_visual=False, vector_action_space=[2], vector_obs_space=1) time_horizon = 6 trajectory = make_fake_trajectory( length=time_horizon, max_step_complete=True, observation_shapes=[(1, )], action_space=[2], ) # Change half of the obs to 0 for i in range(3): trajectory.steps[i].obs[0] = np.zeros(1, dtype=np.float32) trainer_params = TrainerSettings(network_settings=NetworkSettings( normalize=True)) policy = TFPolicy(0, behavior_spec, trainer_params) trajectory_buffer = trajectory.to_agentbuffer() policy.update_normalization(trajectory_buffer["vector_obs"]) # Check that the running mean and variance is correct steps, mean, variance = policy.sess.run([ policy.normalization_steps, policy.running_mean, policy.running_variance ]) assert steps == 6 assert mean[0] == 0.5 assert variance[0] / steps == pytest.approx(0.25, abs=0.01) # Save ckpt and load into another policy path1 = os.path.join(tmp_path, "runid1") model_saver = TFModelSaver(trainer_params, path1) model_saver.register(policy) mock_brain_name = "MockBrain" model_saver.save_checkpoint(mock_brain_name, 6) assert len(os.listdir(tmp_path)) > 0 policy1 = TFPolicy(0, behavior_spec, trainer_params) model_saver = TFModelSaver(trainer_params, path1, load=True) model_saver.register(policy1) model_saver.initialize_or_load(policy1) # Make another update to new policy, this time with all 1's time_horizon = 10 trajectory = make_fake_trajectory( length=time_horizon, max_step_complete=True, observation_shapes=[(1, )], action_space=[2], ) trajectory_buffer = trajectory.to_agentbuffer() policy1.update_normalization(trajectory_buffer["vector_obs"]) # Check that the running mean and variance is correct steps, mean, variance = policy1.sess.run([ policy1.normalization_steps, policy1.running_mean, policy1.running_variance ]) assert steps == 16 assert mean[0] == 0.8125 assert variance[0] / steps == pytest.approx(0.152, abs=0.01)