def main(): obs1 = srk.Observation(np.loadtxt("data000.txt")) obs2 = srk.Observation(np.loadtxt("data001.txt")) obs3 = srk.Observation(np.loadtxt("data002.txt")) obs4 = srk.Observation(np.loadtxt("data003.txt")) obs5 = srk.Observation(np.loadtxt("data004.txt")) category = np.loadtxt("data_category.txt") mlda1 = mlda.MLDA(10, [100], category=category) mlda2 = mlda.MLDA(10, [100, 100], category=category) mlda3 = mlda.MLDA(10, [100, 100], category=category) mlda4 = mlda.MLDA(10, [100, 100], category=category) mlda5 = mlda.MLDA(10, [100, 100], category=category) mlda1.connect(obs1) mlda2.connect(mlda1, obs2) mlda3.connect(mlda2, obs3) mlda4.connect(mlda3, obs4) mlda5.connect(mlda4, obs5) for it in range(5): mlda1.update() mlda2.update() mlda3.update() mlda4.update() mlda5.update()
def main(): obs1 = CNN.CNNFeatureExtractor( ["images/%03d.png"%i for i in range(6)] ) obs2 = srk.Observation( np.loadtxt("histogram_w.txt") ) mlda1 = mlda.MLDA(3, [1000]) mlda2 = mlda.MLDA(3, [50]) mlda3 = mlda.MLDA(3, [50,50]) mlda1.connect( obs1 ) mlda2.connect( obs2 ) mlda3.connect( mlda1, mlda2 ) for it in range(5): mlda1.update() mlda2.update() mlda3.update()
def main(): wavs = ["0_jackson_0.wav", "0_jackson_1.wav", "0_jackson_2.wav","1_jackson_0.wav", "1_jackson_1.wav", "1_jackson_2.wav", "2_jackson_0.wav", "2_jackson_1.wav", "2_jackson_2.wav"] obs1 = hac.HACFeatureExtractor(wavs, [1,1,1]) mlda1 = mlda.MLDA(3, [200], category=[0,0,0,1,1,1,2,2,2]) mlda1.connect( obs1 ) for it in range(1): print( it ) mlda1.update()
def main(): obs1 = srk.Observation(np.loadtxt("dsift.txt")) # 視覚 obs2 = srk.Observation(np.loadtxt("mfcc.txt")) # 聴覚 obs3 = srk.Observation(np.loadtxt("tactile.txt")) # 触覚 obs4 = srk.Observation(np.loadtxt("angle.txt")) # 関節角 object_category = np.loadtxt("object_category.txt") motion_category = np.loadtxt("motion_category.txt") mlda1 = mlda.MLDA(10, [200, 200, 200], category=object_category) mlda2 = mlda.MLDA(10, [200], category=motion_category) mlda3 = mlda.MLDA(10, [100, 100]) mlda1.connect(obs1, obs2, obs3) mlda2.connect(obs4) mlda3.connect(mlda1, mlda2) for it in range(5): print(it) mlda1.update() mlda2.update() mlda3.update()
def main(): obs1 = srk.Observation(np.loadtxt("data1.txt")) obs2 = srk.Observation(np.loadtxt("data2.txt")) data_category = np.loadtxt("category.txt") vae1 = vae_model(18, epoch=200, batch_size=500) gmm1 = gmm.GMM(10, category=data_category) mlda1 = mlda.MLDA(10, [200, 200], category=data_category) vae1.connect(obs1) gmm1.connect(vae1) mlda1.connect(obs2, gmm1) for i in range(5): print(i) vae1.update() gmm1.update() mlda1.update()
def main(): X = pd.read_csv('mfeat-mor', delim_whitespace=True, header=None) Y = pd.read_csv('mfeat-pix', delim_whitespace=True, header=None) Y = Y[:10] X = X[:10] Y.drop(Y.iloc[:, 7:], inplace=True, axis=1) Y.drop(Y.iloc[:, 6:], inplace=True, axis=1) n = X.shape[1] row, col = (n, n) Mlda = mlda.MLDA() vTransforms = Mlda.fit(X, Y, row, col, n) print("Wx -> ") print(vTransforms[0]) print() print("Wy -> ") print(vTransforms[1])