def test_min_max_scaler_multi_deserializer(self): extract_features = ['a', 'b'] feature_extractor = FeatureExtractor( input_scalars=['a', 'b'], output_vector='extracted_multi_outputs', output_vector_items=["{}_out".format(x) for x in extract_features]) scaler = MinMaxScaler() scaler.mlinit(prior_tf=feature_extractor, output_features=['a_scaled', 'b_scaled']) scaler.fit(self.df[['a']]) scaler.serialize_to_bundle(self.tmp_dir, scaler.name) # Deserialize the MinMaxScaler node_name = "{}.node".format(scaler.name) min_max_scaler_tf = MinMaxScaler() min_max_scaler_tf.deserialize_from_bundle(self.tmp_dir, node_name) # Transform some sample data res_a = scaler.transform(self.df[['a', 'b']]) res_b = min_max_scaler_tf.transform(self.df[['a', 'b']]) self.assertEqual(res_a[0][0], res_b[0][0]) self.assertEqual(res_a[0][1], res_b[0][1]) self.assertEqual(scaler.name, min_max_scaler_tf.name) self.assertEqual(scaler.op, min_max_scaler_tf.op)
def test_min_max_scaler_deserializer(self): scaler = MinMaxScaler() scaler.mlinit(input_features=['a'], output_features=['a_scaled']) scaler.fit(self.df[['a']]) scaler.serialize_to_bundle(self.tmp_dir, scaler.name) # Deserialize the MinMaxScaler node_name = "{}.node".format(scaler.name) min_max_scaler_tf = MinMaxScaler() min_max_scaler_tf.deserialize_from_bundle(self.tmp_dir, node_name) # Transform some sample data res_a = scaler.transform(self.df[['a']]) res_b = min_max_scaler_tf.transform(self.df[['a']]) self.assertEqual(res_a[0], res_b[0]) self.assertEqual(scaler.name, min_max_scaler_tf.name) self.assertEqual(scaler.op, min_max_scaler_tf.op)